Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Cell Rep ; 42(6): 112591, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37261953

ABSTRACT

Synapses in the brain exhibit cell-type-specific differences in basal synaptic transmission and plasticity. Here, we evaluated cell-type-specific specializations in the composition of glutamatergic synapses, identifying Btbd11 as an inhibitory interneuron-specific, synapse-enriched protein. Btbd11 is highly conserved across species and binds to core postsynaptic proteins, including Psd-95. Intriguingly, we show that Btbd11 can undergo liquid-liquid phase separation when expressed with Psd-95, supporting the idea that the glutamatergic postsynaptic density in synapses in inhibitory interneurons exists in a phase-separated state. Knockout of Btbd11 decreased glutamatergic signaling onto parvalbumin-positive interneurons. Further, both in vitro and in vivo, Btbd11 knockout disrupts network activity. At the behavioral level, Btbd11 knockout from interneurons alters exploratory behavior, measures of anxiety, and sensitizes mice to pharmacologically induced hyperactivity following NMDA receptor antagonist challenge. Our findings identify a cell-type-specific mechanism that supports glutamatergic synapse function in inhibitory interneurons-with implications for circuit function and animal behavior.


Subject(s)
Synapses , Synaptic Transmission , Animals , Mice , Disks Large Homolog 4 Protein/metabolism , Interneurons/metabolism , Mice, Knockout , Pyramidal Cells/metabolism , Synapses/metabolism , Synaptic Transmission/physiology , Transcription Factors/metabolism
2.
J Lipid Res ; 63(8): 100247, 2022 08.
Article in English | MEDLINE | ID: mdl-35764123

ABSTRACT

Phosphatidic acid is a key signaling molecule heavily implicated in exocytosis due to its protein-binding partners and propensity to induce negative membrane curvature. One phosphatidic acid-producing enzyme, phospholipase D (PLD), has also been implicated in neurotransmission. Unfortunately, due to the unreliability of reagents, there has been confusion in the literature regarding the expression of PLD isoforms in the mammalian brain which has hampered our understanding of their functional roles in neurons. To address this, we generated epitope-tagged PLD1 and PLD2 knockin mice using CRISPR/Cas9. Using these mice, we show that PLD1 and PLD2 are both localized at synapses by adulthood, with PLD2 expression being considerably higher in glial cells and PLD1 expression predominating in neurons. Interestingly, we observed that only PLD1 is expressed in the mouse retina, where it is found in the synaptic plexiform layers. These data provide critical information regarding the localization and potential role of PLDs in the central nervous system.


Subject(s)
Phospholipase D , Animals , Brain , Mice , Phosphatidic Acids , Protein Isoforms , Retina
3.
Front Synaptic Neurosci ; 14: 855673, 2022.
Article in English | MEDLINE | ID: mdl-35573662

ABSTRACT

Lipids and their metabolic enzymes are a critical point of regulation for the membrane curvature required to induce membrane fusion during synaptic vesicle recycling. One such enzyme is diacylglycerol kinase θ (DGKθ), which produces phosphatidic acid (PtdOH) that generates negative membrane curvature. Synapses lacking DGKθ have significantly slower rates of endocytosis, implicating DGKθ as an endocytic regulator. Importantly, DGKθ kinase activity is required for this function. However, protein regulators of DGKθ's kinase activity in neurons have never been identified. In this study, we employed APEX2 proximity labeling and mass spectrometry to identify endogenous interactors of DGKθ in neurons and assayed their ability to modulate its kinase activity. Seven endogenous DGKθ interactors were identified and notably, synaptotagmin-1 (Syt1) increased DGKθ kinase activity 10-fold. This study is the first to validate endogenous DGKθ interactors at the mammalian synapse and suggests a coordinated role between DGKθ-produced PtdOH and Syt1 in synaptic vesicle recycling.

4.
J Am Soc Mass Spectrom ; 31(2): 394-404, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-31939678

ABSTRACT

The use of biotin or biotin-containing reagents is an essential component of many protein purification and labeling technologies. Owing to its small size and high affinity to the avidin family of proteins, biotin is a versatile molecular handle that permits both enrichment and purity that is not easily achieved by other reagents. Traditionally, the use of biotinylation to enrich for proteins has not required the detection of the site of biotinylation. However, newer technologies for discovery of protein-protein interactions, such as APEX and BioID, as well as some of the click chemistry-based labeling approaches have underscored the importance of determining the exact residue that is modified by biotin. Anti-biotin antibody-based enrichment of biotinylated peptides (e.g., BioSITe) coupled to LC-MS/MS permit large-scale detection and localization of sites of biotinylation. As with any chemical modification of peptides, understanding the fragmentation patterns that result from biotin modification is essential to improving its detection by LC-MS/MS. Tandem mass spectra of biotinylated peptides has not yet been studied systematically. Here, we describe the various signature fragment ions generated with collision-induced dissociation of biotinylated peptides. We focused on biotin adducts attached to peptides generated by BioID and APEX experiments, including biotin, isotopically heavy biotin, and biotin-XX-phenol, a nonpermeable variant of biotin-phenol. We also highlight how the detection of biotinylated peptides in high-throughput studies poses certain computational challenges for accurate quantitation which need to be addressed. Our findings about signature fragment ions of biotinylated peptides should be helpful in the confirmation of biotinylation sites.


Subject(s)
Biotin/analysis , Peptides/chemistry , Amino Acid Sequence , Animals , Biotinylation , Cattle , Ions/analysis , Lysine/analysis , Serum Albumin, Bovine/chemistry , Tandem Mass Spectrometry/methods , Tyrosine/analysis
5.
Neuron ; 103(2): 217-234.e4, 2019 07 17.
Article in English | MEDLINE | ID: mdl-31171447

ABSTRACT

Synapses are fundamental information-processing units of the brain, and synaptic dysregulation is central to many brain disorders ("synaptopathies"). However, systematic annotation of synaptic genes and ontology of synaptic processes are currently lacking. We established SynGO, an interactive knowledge base that accumulates available research about synapse biology using Gene Ontology (GO) annotations to novel ontology terms: 87 synaptic locations and 179 synaptic processes. SynGO annotations are exclusively based on published, expert-curated evidence. Using 2,922 annotations for 1,112 genes, we show that synaptic genes are exceptionally well conserved and less tolerant to mutations than other genes. Many SynGO terms are significantly overrepresented among gene variations associated with intelligence, educational attainment, ADHD, autism, and bipolar disorder and among de novo variants associated with neurodevelopmental disorders, including schizophrenia. SynGO is a public, universal reference for synapse research and an online analysis platform for interpretation of large-scale -omics data (https://syngoportal.org and http://geneontology.org).


Subject(s)
Brain/cytology , Gene Ontology , Proteomics , Software , Synapses/physiology , Animals , Brain/physiology , Databases, Genetic , Humans , Knowledge Bases , Synaptic Potentials/physiology , Synaptosomes
6.
J Proteome Res ; 17(2): 759-769, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29249144

ABSTRACT

Biotin-based labeling strategies are widely employed to study protein-protein interactions, subcellular proteomes and post-translational modifications, as well as, used in drug discovery. While the high affinity of streptavidin for biotin greatly facilitates the capture of biotinylated proteins, it still presents a challenge, as currently employed, for the recovery of biotinylated peptides. Here we describe a strategy designated Biotinylation Site Identification Technology (BioSITe) for the capture of biotinylated peptides for LC-MS/MS analyses. We demonstrate the utility of BioSITe when applied to proximity-dependent labeling methods, APEX and BioID, as well as biotin-based click chemistry strategies for identifying O-GlcNAc-modified sites. We demonstrate the use of isotopically labeled biotin for quantitative BioSITe experiments that simplify differential interactome analysis and obviate the need for metabolic labeling strategies such as SILAC. Our data also highlight the potential value of site-specific biotinylation in providing spatial and topological information about proteins and protein complexes. Overall, we anticipate that BioSITe will replace the conventional methods in studies where detection of biotinylation sites is important.


Subject(s)
Acetylglucosamine/metabolism , Biotin/chemistry , Click Chemistry/methods , Peptides/isolation & purification , Protein Processing, Post-Translational , Streptavidin/chemistry , Acetylglucosamine/chemistry , Amino Acid Sequence , Animals , Antibodies, Immobilized/chemistry , B-Lymphocytes/chemistry , Biotinylation , Cell Line , Chromatography, Liquid , HEK293 Cells , Humans , Mice , Peptides/chemistry , Proteolysis , Tandem Mass Spectrometry
7.
Front Cell Dev Biol ; 4: 101, 2016.
Article in English | MEDLINE | ID: mdl-27683659

ABSTRACT

Diacylglycerol kinases (DGKs) are a family of enzymes that catalyze the ATP-dependent phosphorylation of diacylglycerol (DAG) to phosphatidic acid (PtdOH). The recognition of the importance of these enzymes has been increasing ever since it was determined that they played a role in the phosphatidylinositol (PtdIns) cycle and a number of excellent reviews have already been written [(see van Blitterswijk and Houssa, 2000; Kanoh et al., 2002; Mérida et al., 2008; Tu-Sekine and Raben, 2009, 2011; Shulga et al., 2011; Tu-Sekine et al., 2013) among others]. We now know there are ten mammalian DGKs that are organized into five classes. DGK-θ is the lone member of the Type V class of DGKs and remains as one of the least studied. This review focuses on our current understanding of the structure, enzymology, regulation, and physiological roles of this DGK and suggests some future areas of research to understand this DGK isoform.

8.
Cell Rep ; 14(2): 200-7, 2016 Jan 12.
Article in English | MEDLINE | ID: mdl-26748701

ABSTRACT

Synaptic transmission relies on coordinated coupling of synaptic vesicle (SV) exocytosis and endocytosis. While much attention has focused on characterizing proteins involved in SV recycling, the roles of membrane lipids and their metabolism remain poorly understood. Diacylglycerol, a major signaling lipid produced at synapses during synaptic transmission, is regulated by diacylglycerol kinase (DGK). Here, we report a role for DGKθ in the mammalian CNS in facilitating recycling of presynaptic vesicles at excitatory synapses. Using synaptophysin- and vGlut1-pHluorin optical reporters, we found that acute and chronic deletion of DGKθ attenuated the recovery of SVs following neuronal stimulation. Rescue of recycling kinetics required DGKθ kinase activity. Our data establish a role for DGK catalytic activity at the presynaptic nerve terminal in SV recycling. Altogether, these data suggest that DGKθ supports synaptic transmission during periods of elevated neuronal activity.


Subject(s)
Presynaptic Terminals/metabolism , Synaptic Transmission/physiology , Synaptic Vesicles/metabolism , Animals , Mammals
9.
Adv Biol Regul ; 57: 147-52, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25446883

ABSTRACT

The synaptic vesicle (SV) cycle includes exocytosis of vesicles loaded with a neurotransmitter such as glutamate, coordinated recovery of SVs by endocytosis, refilling of vesicles, and subsequent release of the refilled vesicles from the presynaptic bouton. SV exocytosis is tightly linked with endocytosis, and variations in the number of vesicles, and/or defects in the refilling of SVs, will affect the amount of neurotransmitter available for release (Sudhof, 2004). There is increasing interest in the roles synaptic vesicle lipids and lipid metabolizing enzymes play in this recycling. Initial emphasis was placed on the role of polyphosphoinositides in SV cycling as outlined in a number of reviews (Lim and Wenk, 2009; Martin, 2012; Puchkov and Haucke, 2013; Rohrbough and Broadie, 2005). Other lipids are now recognized to also play critical roles. For example, PLD1 (Humeau et al., 2001; Rohrbough and Broadie, 2005) and some DGKs (Miller et al., 1999; Nurrish et al., 1999) play roles in neurotransmission which is consistent with the critical roles for phosphatidic acid (PtdOH) and diacylglycerol (DAG) in the regulation of SV exo/endocytosis (Cremona et al., 1999; Exton, 1994; Huttner and Schmidt, 2000; Lim and Wenk, 2009; Puchkov and Haucke, 2013; Rohrbough and Broadie, 2005). PLD generates phosphatidic acid by catalyzing the hydrolysis of phosphatidylcholine (PtdCho) and in some systems this PtdOH is de-phosphorylated to generate DAG. In contrast, DGK catalyzes the phosphorylation of DAG thereby converting it into PtdOH. While both enzymes are poised to regulate the levels of DAG and PtdOH, therefore, they both lead to the generation of PtdOH and could have opposite effects on DAG levels. This is particularly important for SV cycling as PtdOH and DAG are both needed for evoked exocytosis (Lim and Wenk, 2009; Puchkov and Haucke, 2013; Rohrbough and Broadie, 2005). Two lipids and their involved metabolic enzymes, two sphingolipids have also been implicated in exocytosis: sphingosine (Camoletto et al., 2009; Chan et al., 2012; Chan and Sieburth, 2012; Darios et al., 2009; Kanno et al., 2010; Rohrbough et al., 2004) and sphingosine-1-phosphate (Chan, Hu, 2012; Chan and Sieburth, 2012; Kanno et al., 2010). Finally a number of reports have focused on the somewhat less well studies roles of sphingolipids and cholesterol in SV cycling. In this report, we review the recent understanding of the roles PLDs, DGKs, and DAG lipases, as well as sphingolipids and cholesterol play in synaptic vesicle cycling.


Subject(s)
Diacylglycerol Kinase/metabolism , Diglycerides/metabolism , Lipoprotein Lipase/metabolism , Phosphatidic Acids/metabolism , Phospholipase D/metabolism , Synaptic Vesicles/metabolism , Animals , Cholesterol/genetics , Cholesterol/metabolism , Diacylglycerol Kinase/genetics , Diglycerides/genetics , Endocytosis/physiology , Humans , Lipoprotein Lipase/genetics , Phosphatidic Acids/genetics , Phospholipase D/genetics , Sphingolipids/genetics , Sphingolipids/metabolism , Synaptic Vesicles/genetics
10.
Sci Signal ; 6(304): ra105, 2013 Dec 03.
Article in English | MEDLINE | ID: mdl-24300897

ABSTRACT

Oncogenic K-Ras proteins, such as K-Ras(G12D), accumulate in the active, guanosine triphosphate (GTP)-bound conformation and stimulate signaling through effector kinases. The presence of the K-Ras(G12D) oncoprotein at a similar abundance to that of endogenous wild-type K-Ras results in only minimal phosphorylation and activation of the canonical Raf-mitogen-activated or extracellular signal-regulated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) signaling cascades in primary hematopoietic cells, and these pathways remain dependent on growth factors for efficient activation. We showed that phospholipase C-γ (PLC-γ), PI3K, and their generated second messengers link activated cytokine receptors to Ras and ERK signaling in differentiated bone marrow cells and in a cell population enriched for leukemia stem cells. Cells expressing endogenous oncogenic K-Ras(G12D) remained dependent on the second messenger diacylglycerol for the efficient activation of Ras-ERK signaling. These data raise the unexpected possibility of therapeutically targeting proteins that function upstream of oncogenic Ras in cancer.


Subject(s)
Cytokines/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Hematopoietic Stem Cells/metabolism , Neoplastic Stem Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phospholipase C gamma/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Amino Acid Substitution , Animals , Cells, Cultured , Cytokines/genetics , Extracellular Signal-Regulated MAP Kinases/genetics , Hematopoietic Stem Cells/pathology , Leukemia/genetics , Leukemia/metabolism , Leukemia/pathology , MAP Kinase Signaling System/genetics , Mice , Mutation, Missense , Neoplastic Stem Cells/pathology , Phosphatidylinositol 3-Kinases/genetics , Phospholipase C gamma/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Second Messenger Systems/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
11.
Adv Biol Regul ; 53(1): 118-26, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23266086

ABSTRACT

Given the well-established roles of diacylglycerol (DAG) and phosphatidic acid (PtdOH) in a variety of signaling cascades, it is not surprising that there is an increasing interest in understanding their physiological roles and mechanisms that regulate their cellular levels. One class of enzymes capable of coordinately regulating the levels of these two lipids is the diacylglycerol kinases (DGKs). These enzymes catalyze the transfer of the γ-phosphate of ATP to the hydroxyl group of DAG, which generates PtdOH while reducing DAG. As these enzymes reciprocally modulate the relative levels of these two signaling lipids, it is essential to understand the regulation and roles of these enzymes in various tissues. One system where these enzymes play important roles is the nervous system. Of the ten mammalian DGKs, eight of them are readily detected in the mammalian central nervous system (CNS): DGK-α, DGK-ß, DGK-γ, DGK-η, DGK-ζ, DGK-ι, DGK-ε, and DGK-θ. Despite the increasing interest in DGKs, little is known about their regulation. We have focused some attention on understanding the enzymology and regulation of one of these DGK isoforms, DGK-θ. We recently showed that DGK-θ is regulated by an accessory protein containing polybasic regions. We now report that this accessory protein is required for the previously reported broadening of the pH profile observed in cell lysates in response to phosphatidylserine (PtdSer). Our data further reveal DGK-θ is regulated by magnesium and zinc, and sensitive to the known DGK inhibitor R599022. These data outline new parameters involved in regulating DGK-θ.


Subject(s)
Central Nervous System/enzymology , Diacylglycerol Kinase/metabolism , Diglycerides/metabolism , Isoenzymes/metabolism , Neurons/enzymology , Phosphatidic Acids/metabolism , Animals , Cations, Divalent , Cell Line, Tumor , Central Nervous System/cytology , Central Nervous System/drug effects , Diacylglycerol Kinase/antagonists & inhibitors , Diacylglycerol Kinase/genetics , Enzyme Inhibitors/pharmacology , Enzyme Stability/drug effects , Gene Expression Regulation/drug effects , Hydrogen-Ion Concentration , Isoenzymes/antagonists & inhibitors , Isoenzymes/genetics , Magnesium/metabolism , Mice , NIH 3T3 Cells , Neurons/cytology , Neurons/drug effects , Phosphatidylserines/pharmacology , Pyrimidinones/pharmacology , Signal Transduction/drug effects , Thiazoles/pharmacology , Zinc/metabolism
12.
Nat Chem Biol ; 8(9): 751-8, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22772155

ABSTRACT

Activation-induced deaminase (AID)/APOBEC-family cytosine deaminases, known to function in diverse cellular processes from antibody diversification to mRNA editing, have also been implicated in DNA demethylation, a major process for transcriptional activation. Although oxidation-dependent pathways for demethylation have been described, pathways involving deamination of either 5-methylcytosine (5mC) or 5-hydroxymethylcytosine (5hmC) have emerged as alternatives. Here we address the biochemical plausibility of deamination-coupled demethylation. We found that purified AID/APOBECs have substantially reduced activity on 5mC relative to cytosine, their canonical substrate, and no detectable deamination of 5hmC. This finding was explained by the reactivity of a series of modified substrates, where steric bulk was increasingly detrimental to deamination. Further, upon AID/APOBEC overexpression, the deamination product of 5hmC was undetectable in genomic DNA, whereas oxidation intermediates remained detectable. Our results indicate that the steric requirements for cytosine deamination are one intrinsic barrier to the proposed function of deaminases in DNA demethylation.


Subject(s)
Cytidine Deaminase/metabolism , Cytosine/metabolism , DNA Methylation , APOBEC-1 Deaminase , Deamination , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...