Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 223
Filter
1.
Int J Cancer ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822730

ABSTRACT

Nasopharyngeal carcinoma (NPC) risk prediction models based on Epstein-Barr virus (EBV)-antibody testing have shown potential for screening of NPC; however, the long-term stability is unclear. Here, we investigated the kinetics of two EBV-antibody NPC risk scores within the Taiwan NPC Multiplex Family Study. Among 545 participants with multiple blood samples, we evaluated the stability of a 2-marker enzyme-linked immunosorbent assay score and 13-marker multiplex serology score using the intra-class correlation coefficient (ICC) by fitting a linear mixed model that accounted for the clustering effect of multiple measurements per subject and age. We also estimated the clustering of positive tests using Fleiss's kappa statistic. Over an average 20-year follow-up, the 2-marker score showed high stability over time, whereas the 13-marker score was more variable (p < .05). Case-control status is associated with the kinetics of the antibody response, with higher ICCs among cases. Positive tests were more likely to cluster within the same individual for the 2-marker score than the 13-marker score (p < .05). The 2-marker score had an increase in specificity from ~90% for single measurement to ~96% with repeat testing. The 13-marker score had a specificity of ~73% for a single measurement that increased to ~92% with repeat testing. Among individuals who developed NPC, none experienced score reversion. Our findings suggest that repeated testing could improve the specificity of NPC screening in high-risk NPC multiplex families. Further studies are required to determine the impact on sensitivity, establish optimal screening intervals, and generalize these findings to general population settings in high-risk regions.

2.
Cell Genom ; 4(3): 100500, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38325367

ABSTRACT

Large-scale biorepositories and databases are essential to generate equitable, effective, and sustainable advances in cancer prevention, early detection, cancer therapy, cancer care, and surveillance. The Mutographs project has created a large genomic dataset and biorepository of over 7,800 cancer cases from 30 countries across five continents with extensive demographic, lifestyle, environmental, and clinical information. Whole-genome sequencing is being finalized for over 4,000 cases, with the primary goal of understanding the causes of cancer at eight anatomic sites. Genomic, exposure, and clinical data will be publicly available through the International Cancer Genome Consortium Accelerating Research in Genomic Oncology platform. The Mutographs sample and metadata biorepository constitutes a legacy resource for new projects and collaborations aiming to increase our current research efforts in cancer genomic epidemiology globally.


Subject(s)
Neoplasms , Humans , Neoplasms/diagnosis , Genomics , Databases, Factual , Delivery of Health Care , Biological Specimen Banks
3.
J Cutan Pathol ; 51(3): 198-204, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38031352

ABSTRACT

A host of signature genetic alterations have been demonstrated in Spitz neoplasms, most notably fusions of kinase genes (including BRAF, ALK, ROS1, NTRK1, NTRK3, RET, MET, MAP3K8) or variants in HRAS. While there are multiple reports of rearrangements involving NTRK1 and NTRK3 in Spitz tumors, there are very few reports of NTRK2-rearranged Spitz nevi in the literature. This report presents an NTRK2-rearranged atypical Spitz tumor with spindled cell features. The patient was a 6-year-old female with a growing pigmented papule on the back. Histopathological evaluation revealed an asymmetric, biphasic, compound proliferation of melanocytes featuring an epithelioid cell population arranged as variably sized nests and single cells along the basal layer with extension down adnexa, as well as a population of spindled melanocytes with desmoplastic features and loss of Melan-A expression in the dermis. There was partial loss of p16 expression in the epidermal component and diffuse loss in the dermal component. Immunohistochemistry for PRAME, ALK, NTRK1, HRAS Q61R, p53, and BRAF V600E were negative. A SQSTM1::NTRK2 fusion was identified by RNA sequencing. No TERT promoter hotspot variants were detected. This case report expands the known histopathologic spectrum of genetic alterations in Spitz neoplasms.


Subject(s)
Nevus, Epithelioid and Spindle Cell , Skin Neoplasms , Female , Humans , Child , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Sequestosome-1 Protein/genetics , Protein-Tyrosine Kinases , Proto-Oncogene Proteins B-raf , Proto-Oncogene Proteins/genetics , Nevus, Epithelioid and Spindle Cell/genetics , Receptor Protein-Tyrosine Kinases/genetics , Antigens, Neoplasm
4.
JAMA Dermatol ; 159(10): 1112-1118, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37585199

ABSTRACT

Importance: Knowledge about the prevalence and tumor types of CDKN2A-related melanoma-astrocytoma syndrome (MAS) is limited and could improve disease recognition. Objective: To estimate the prevalence and describe the tumor types of MAS. Design, Setting, and Participants: This retrospective cohort study analyzed all available MAS cases from medical centers in the US (2 sites) and Europe (2 sites) and from biomedical population genomic databases (UK Biobank [United Kingdom], Geisinger MyCode [US]) between January 1, 1976, and December 31, 2020. Patients with MAS with CDKN2A germline pathogenic variants and 1 or more neural tumors were included. Data were analyzed from June 1, 2022, to January 31, 2023. Main Outcomes and Measures: Disease prevalence and tumor frequency. Results: Prevalence of MAS ranged from 1 in 170 503 (n = 1 case; 95% CI, 1:30 098-1:965 887) in Geisinger MyCode (n = 170 503; mean [SD] age, 58.9 [19.1] years; 60.6% women; 96.2% White) to 1 in 39 149 (n = 12 cases; 95% CI, 1:22 396-1:68 434) in UK Biobank (n = 469 789; mean [SD] age, 70.0 [8.0] years; 54.2% women; 94.8% White). Among UK Biobank patients with MAS (n = 12) identified using an unbiased genomic ascertainment approach, brain neoplasms (4 of 12, 33%; 1 glioblastoma, 1 gliosarcoma, 1 astrocytoma, 1 unspecified type) and schwannomas (3 of 12, 25%) were the most common malignant and benign neural tumors, while cutaneous melanoma (2 of 12, 17%) and head and neck squamous cell carcinoma (2 of 12, 17%) were the most common nonneural malignant neoplasms. In a separate case series of 14 patients with MAS from the US and Europe, brain neoplasms (4 of 14, 29%; 2 glioblastomas, 2 unspecified type) and malignant peripheral nerve sheath tumor (2 of 14, 14%) were the most common neural cancers, while cutaneous melanoma (4 of 14, 29%) and sarcomas (2 of 14, 14%; 1 liposarcoma, 1 unspecified type) were the most common nonneural cancers. Cutaneous neurofibromas (7 of 14, 50%) and schwannomas (2 of 14, 14%) were also common. In 1 US family, a father and son with MAS had clinical diagnoses of neurofibromatosis type 1 (NF1). Genetic testing of the son detected a pathogenic CDKN2A splicing variant (c.151-1G>C) and was negative for NF1 genetic alterations. In UK Biobank, 2 in 150 (1.3%) individuals with clinical NF1 diagnoses had likely pathogenic variants in CDKN2A, including 1 individual with no detected variants in the NF1 gene. Conclusions and Relevance: This cohort study estimates the prevalence and describes the tumors of MAS. Additional studies are needed in genetically diverse populations to further define population prevalence and disease phenotypes.


Subject(s)
Astrocytoma , Brain Neoplasms , Melanoma , Neurilemmoma , Neurofibromatosis 1 , Skin Neoplasms , Humans , Female , Middle Aged , Aged , Male , Melanoma/epidemiology , Melanoma/genetics , Neurofibromatosis 1/diagnosis , Retrospective Studies , Cohort Studies , Prevalence , Skin Neoplasms/epidemiology , Skin Neoplasms/genetics , Astrocytoma/epidemiology , Astrocytoma/genetics , Phenotype , Brain Neoplasms/epidemiology , Brain Neoplasms/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Melanoma, Cutaneous Malignant
5.
JAAD Int ; 11: 43-51, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36876055

ABSTRACT

Background: Spitzoid morphology in familial melanoma has been associated with germline variants in POT1, a telomere maintenance gene (TMG), suggesting a link between telomere biology and spitzoid differentiation. Objective: To assess if familial melanoma cases associated with germline variants in TMG (POT1, ACD, TERF2IP, and TERT) commonly exhibit spitzoid morphology. Methods: In this case series, melanomas were classified as having spitzoid morphology if at least 3 of 4 dermatopathologists reported this finding in ≥25% of tumor cells. Logistic regression was used to calculate odds ratios (OR) of spitzoid morphology compared to familial melanomas from unmatched noncarriers that were previously reviewed by a National Cancer Institute dermatopathologist. Results: Spitzoid morphology was observed in 77% (23 of 30), 75% (3 of 4), 50% (2 of 4), and 50% (1 of 2) of melanomas from individuals with germline variants in POT1, TERF2IP, ACD, and TERT, respectively. Compared to noncarriers (n = 139 melanomas), POT1 carriers (OR = 225.1, 95% confidence interval: 51.7-980.5; P < .001) and individuals with TERF2IP, ACD, and TERT variants (OR = 82.4, 95% confidence interval: 21.3-494.6; P < .001) had increased odds of spitzoid morphology. Limitations: Findings may not be generalizable to nonfamilial melanoma cases. Conclusion: Spitzoid morphology in familial melanoma could suggest germline alteration of TMG.

6.
J Natl Cancer Inst ; 115(6): 712-732, 2023 06 08.
Article in English | MEDLINE | ID: mdl-36929942

ABSTRACT

BACKGROUND: The shared inherited genetic contribution to risk of different cancers is not fully known. In this study, we leverage results from 12 cancer genome-wide association studies (GWAS) to quantify pairwise genome-wide genetic correlations across cancers and identify novel cancer susceptibility loci. METHODS: We collected GWAS summary statistics for 12 solid cancers based on 376 759 participants with cancer and 532 864 participants without cancer of European ancestry. The included cancer types were breast, colorectal, endometrial, esophageal, glioma, head and neck, lung, melanoma, ovarian, pancreatic, prostate, and renal cancers. We conducted cross-cancer GWAS and transcriptome-wide association studies to discover novel cancer susceptibility loci. Finally, we assessed the extent of variant-specific pleiotropy among cancers at known and newly identified cancer susceptibility loci. RESULTS: We observed widespread but modest genome-wide genetic correlations across cancers. In cross-cancer GWAS and transcriptome-wide association studies, we identified 15 novel cancer susceptibility loci. Additionally, we identified multiple variants at 77 distinct loci with strong evidence of being associated with at least 2 cancer types by testing for pleiotropy at known cancer susceptibility loci. CONCLUSIONS: Overall, these results suggest that some genetic risk variants are shared among cancers, though much of cancer heritability is cancer-specific and thus tissue-specific. The increase in statistical power associated with larger sample sizes in cross-disease analysis allows for the identification of novel susceptibility regions. Future studies incorporating data on multiple cancer types are likely to identify additional regions associated with the risk of multiple cancer types.


Subject(s)
Genome-Wide Association Study , Neoplasms , Male , Humans , Genome-Wide Association Study/methods , Genetic Predisposition to Disease , Neoplasms/genetics , Risk Factors , Transcriptome , Polymorphism, Single Nucleotide
7.
PLoS One ; 18(1): e0280951, 2023.
Article in English | MEDLINE | ID: mdl-36696392

ABSTRACT

The use of publicly available sequencing datasets as controls (hereafter, "public controls") in studies of rare variant disease associations has great promise but can increase the risk of false-positive discovery. The specific factors that could contribute to inflated distribution of test statistics have not been systematically examined. Here, we leveraged both public controls, gnomAD v2.1 and several datasets sequenced in our laboratory to systematically investigate factors that could contribute to the false-positive discovery, as measured by λΔ95, a measure to quantify the degree of inflation in statistical significance. Analyses of datasets in this investigation found that 1) the significantly inflated distribution of test statistics decreased substantially when the same variant caller and filtering pipelines were employed, 2) differences in library prep kits and sequencers did not affect the false-positive discovery rate and, 3) joint vs. separate variant-calling of cases and controls did not contribute to the inflation of test statistics. Currently available methods do not adequately adjust for the high false-positive discovery. These results, especially if replicated, emphasize the risks of using public controls for rare-variant association tests in which individual-level data and the computational pipeline are not readily accessible, which prevents the use of the same variant-calling and filtering pipelines on both cases and controls. A plausible solution exists with the emergence of cloud-based computing, which can make it possible to bring containerized analytical pipelines to the data (rather than the data to the pipeline) and could avert or minimize these issues. It is suggested that future reports account for this issue and provide this as a limitation in reporting new findings based on studies that cannot practically analyze all data on a single pipeline.


Subject(s)
High-Throughput Nucleotide Sequencing , Motivation , High-Throughput Nucleotide Sequencing/methods , Polymorphism, Single Nucleotide , Software
9.
Clin Cancer Res ; 29(1): 261-270, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36260525

ABSTRACT

PURPOSE: Chordoma is a rare bone tumor with a high recurrence rate and limited treatment options. The aim of this study was to identify molecular subtypes of chordoma that may improve clinical management. EXPERIMENTAL DESIGN: We conducted RNA sequencing in 48 tumors from patients with Chinese skull-base chordoma and identified two major molecular subtypes. We then replicated the classification using a NanoString panel in 48 patients with chordoma from North America. RESULTS: Tumors in one subtype were more likely to have somatic mutations and reduced expression in chromatin remodeling genes, such as PBRM1 and SETD2, whereas the other subtype was characterized by the upregulation of genes in epithelial-mesenchymal transition and Sonic Hedgehog pathways. IHC staining of top differentially expressed genes between the two subtypes in 312 patients with Chinese chordoma with long-term follow-up data showed that the expression of some markers such as PTCH1 was significantly associated with survival outcomes. CONCLUSIONS: Our findings may improve the understanding of subtype-specific tumorigenesis of chordoma and inform clinical prognostication and targeted options.


Subject(s)
Chordoma , Skull Base Neoplasms , Humans , Chordoma/genetics , Chordoma/pathology , Hedgehog Proteins/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Profiling , Skull Base Neoplasms/genetics , Skull Base Neoplasms/pathology
10.
JCO Precis Oncol ; 6: e2200145, 2022 11.
Article in English | MEDLINE | ID: mdl-36409970

ABSTRACT

PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) is a component of familial melanoma due to germline pathogenic variants (GPVs) in CDKN2A. However, it is unclear what role this gene or other genes play in its etiology. MATERIALS AND METHODS: We analyzed 189 cancer predisposition genes using parametric rare-variant association (RVA) tests and nonparametric permutation tests to identify gene-level associations in PDAC for patients with (CDKN2A+) and without (CDKN2A-) GPV. Exome sequencing was performed on 84 patients with PDAC, 47 CDKN2A+ and 37 CDKN2A-. After variant filtering, various RVA tests and permutation tests were run separately by CDKN2A status. Genes with the strongest nominal associations were evaluated in patients with PDAC from The Cancer Genome Atlas and the UK Biobank (UKB). A secondary analysis including only GPV from UKB was also performed. RESULTS: In RVA tests, ERCC4 and RET showed the most compelling evidence as plausible PDAC candidate genes for CDKN2A+ patients. In contrast, the findings in CDKN2A- patients provided evidence for HMBS, EPCAM, and MRE11 as potential new candidate genes and confirmed ATM, BRCA2, and PALB2 as PDAC genes, consistent with findings in The Cancer Genome Atlas and the UKB. As expected, CDKN2A- patients were more likely to harbor GPVs from the 189 genes investigated. When including only GPVs from UKB, significant associations with PDAC were seen for ATM, BRCA2, and CDKN2A. CONCLUSION: These results suggest that variants in other genes likely play a role in PDAC in all patients and that PDAC in CDKN2A+ patients has a distinct etiology from PDAC in CDKN2A- patients.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Genetic Predisposition to Disease/genetics , Pancreatic Neoplasms/genetics , Carcinoma, Pancreatic Ductal/genetics , Cyclin-Dependent Kinase Inhibitor Proteins/genetics , Germ Cells/pathology , Cyclin-Dependent Kinase Inhibitor p16/genetics , Pancreatic Neoplasms
11.
JNCI Cancer Spectr ; 6(6)2022 11 01.
Article in English | MEDLINE | ID: mdl-36269225

ABSTRACT

BACKGROUND: Few studies have evaluated the relationship between CDKN2A germline pathogenic variants (GPV), transcript (p16/p14ARF) alteration, and cancer risk. METHODS: Standardized incidence ratios (SIRs) comparing cancer risk with the general population were calculated for 385 CDKN2A GPV carriers from 2 large cohorts (259 United States and 126 Swedish individuals) using Poisson regression; statistical significance was defined as P less than .002 (Bonferroni correction). Cumulative incidence is reported for melanoma and nonmelanoma cancer. RESULTS: Incidence was increased for melanoma (SIR = 159.8, 95% confidence interval [CI] = 132.1 to 193.2), pancreatic cancer (SIR = 24.1, 95% CI = 14.7 to 39.4), head and neck squamous cell carcinoma (SIR = 16.2, 95% CI = 9.5 to 27.6), and lung cancer (SIR = 5.6, 95% CI = 3.4 to 9.1) in GPV carriers. Similar associations were observed with p16 alteration. Combined p16 and p14ARF alteration was associated with increased incidence of esophageal cancer (SIR = 16.7, 95% CI = 5.7 to 48.9) and malignant peripheral nerve sheath tumor (SIR = 113.0, 95% CI = 16.4 to 780.9), although cancer events were limited (n < 5 for each malignancy). Cumulative incidence at age 70 years for melanoma and nonmelanoma cancer was 68.3% (95% CI = 68.0% to 68.6%) and 35.2% (95% CI = 34.9% to 35.6%), respectively. A total 89% of smoking-related cancers (lung, head and neck squamous cell carcinoma, pancreatic, esophageal) occurred in ever smokers. CONCLUSION: These findings highlight the impact of p16 and p14ARF alteration on cancer risk. Smoking was an important risk factor for smoking-related cancers in our study.


Subject(s)
Head and Neck Neoplasms , Melanoma , Humans , United States , Aged , Tumor Suppressor Protein p14ARF/genetics , Squamous Cell Carcinoma of Head and Neck/epidemiology , Cyclin-Dependent Kinase Inhibitor p16/genetics , Melanoma/epidemiology , Risk Factors
12.
Cancers (Basel) ; 14(20)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36291785

ABSTRACT

BACKGROUND: Human Cub and Sushi Multiple Domains 1 (CSMD1) is a novel candidate tumor-suppressor gene that codes for multiple domains, including complement regulatory and adhesion proteins, and has recently been shown to have alterations in multiple cancers. We investigated CSMD1 in esophageal squamous cell carcinoma (ESCC) by performing an integrated analysis on somatic copy number alterations (CNAs), including copy-number gain or loss, allelic imbalance (AI), loss of heterozygosity (LOH), and the expressions of mRNA and its target miRNAs on specimens from the same patients with ESCC. RESULTS: (i) Two-thirds of ESCC patients had all three types of alterations studied-somatic DNA alterations in 70%, and abnormal expressions of CSMD1 RNA in 69% and in target miRNAs in 66%; patterns among these alterations were complex. (ii) In total, 97% of 888 CSMD1 SNPs studied showed somatic DNA alterations, with most located near exons 4-11, 24-25, 39-40, 55-56, and 69-70. (iii) In total, 68% of SNPs with a CNA were correlated with expression of CSMD1. (iv) A total of 33 correlations between non-coding SNPs and expression of CSMD1 target miRs were found. CONCLUSIONS: Our results indicate that the CSMD1 gene may play a role in ESCC through complex patterns of DNA alterations and RNA and miRNA expressions. Alterations in some somatic SNPs in non-coding regions of CSMD1 appear to influence expression of this gene and its target miRNAs.

13.
Cancers (Basel) ; 14(13)2022 Jul 02.
Article in English | MEDLINE | ID: mdl-35805029

ABSTRACT

Patients with germline pathogenic variants (GPV) in cancer predisposition genes are at increased risk of pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer. The genes most frequently found to harbor GPV in unselected PDAC cases are ATM, BRCA1, BRCA2, CDKN2A, CHEK2, and PALB2. However, GPV prevalence and gene-specific associations have not been extensively studied in the general population. To further explore these associations, we analyzed genomic and phenotypic data obtained from the UK Biobank (UKB) and Geisinger MyCode Community Health Initiative (GHS) cohorts comprising 200,600 and 175,449 participants, respectively. We estimated the frequency and calculated relative risks (RRs) of heterozygotes in both cohorts and a subset of individuals with PDAC. The combined frequency of heterozygous carriers of GPV in the general population ranged from 1.22% for CHEK2 to 0.05% for CDKN2A. The frequency of GPV in PDAC cases varied from 2.38% (ATM) to 0.19% (BRCA1 and CDKN2A). The RRs of PDAC were elevated for all genes except for BRCA1 and varied widely by gene from high (ATM) to low (CHEK2, BRCA2). This work expands our understanding of the frequencies of GPV heterozygous carriers and associations between PDAC and GPV in several important PDAC susceptibility genes.

14.
Hum Mutat ; 43(10): 1396-1407, 2022 10.
Article in English | MEDLINE | ID: mdl-35762214

ABSTRACT

Chordoma is a rare bone tumor with genetic risk factors largely unknown. We conducted a whole-exome sequencing (WES) analysis of germline DNA from 19 familial chordoma cases in five pedigrees and 137 sporadic chordoma patients and identified 17 rare germline variants in PALB2 and BRCA2, whose products play essential roles in homologous recombination (HR) and tumor suppression. One PALB2 variant showed disease cosegregation in a family with four affected people or obligate gene carrier. Chordoma cases had a significantly increased burden of rare variants in both genes when compared to population-based controls. Four of the six PALB2 variants identified from chordoma patients modestly affected HR function and three of the 11 BRCA2 variants caused loss of function in experimental assays. These results, together with previous reports of abnormal morphology and Brachyury expression of the notochord in Palb2 knockout mouse embryos and genomic signatures associated with HR defect and HR gene mutations in advanced chordomas, suggest that germline mutations in PALB2 and BRCA2 may increase chordoma susceptibility. Our data shed light on the etiology of chordoma and support the previous finding that PARP-1 inhibitors may be a potential therapy for some chordoma patients.


Subject(s)
BRCA2 Protein , Breast Neoplasms , Chordoma , Fanconi Anemia Complementation Group N Protein , Animals , BRCA2 Protein/genetics , Breast Neoplasms/genetics , Chordoma/genetics , Fanconi Anemia Complementation Group N Protein/genetics , Female , Genes, BRCA2 , Genetic Predisposition to Disease , Germ-Line Mutation , Humans , Mice
15.
Cancers (Basel) ; 14(7)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35406404

ABSTRACT

We integrated ESCC expression and GWAS genotyping, to investigate eQTL and somatic DNA segment alterations, including somatic copy number alteration, allelic imbalance (AI), and loss of heterozygosity (LOH) in ESCC. First, in eQTL analysis, we used a classical approach based on genotype data from GWAS and expression signals in normal tissue samples, and then used a modified approach based on fold change in the tumor vs. normal samples. We focused on the genes in three pathways: inflammation, DNA repair, and immunity. Among the significant (p < 0.05) SNP-probe pairs from classical and modified eQTL analyses, 24 genes were shared by the two approaches, including 18 genes that showed the same numbers of SNPs and probes and 6 genes that had the different numbers of SNPs and probes. For these 18 genes, we found 28 SNP−probe pairs were correlated in opposite directions in the two approaches, indicating an intriguing difference between the classical and modified eQTL approaches. Second, we analyzed the somatic DNA segment alterations. Across the 24 genes, abnormal gene expression on mRNA arrays was seen in 19−95% of cases and 26−78% showed somatic DNA segment alterations on Affymetrix GeneChip Human Mapping Arrays. The results suggested that this strategy could identify gene expression and somatic DNA segment alterations for biological markers (genes) by combining classical and modified eQTLs and somatic DNA evaluation on SNP arrays. Thus, this study approach may allow us to understand functionality indicative of potentially relevant biomarkers in ESCC.

16.
J Invest Dermatol ; 142(9): 2464-2475.e5, 2022 09.
Article in English | MEDLINE | ID: mdl-35181301

ABSTRACT

The application of whole-exome sequencing has led to the identification of high- and moderate-risk variants that contribute to cutaneous melanoma susceptibility. However, confirming disease-causing variants remains challenging. We applied a gene coexpression network analysis to prioritize the candidate genes identified from whole-exome sequencing of 34 melanoma-prone families, with at least three affected members sequenced per family (N = 119 cases). A coexpression network was constructed from genotype-tissue expression project, skin melanoma from the cancer genome atlas, and primary melanocyte cultures. We performed module-specific enrichment and focused on modules associated with pigmentation processes because they are the best-studied and most well-known risk factors for melanoma susceptibility. We found that pigmentation-associated modules across the four expression datasets examined were enriched for well-known melanoma susceptibility genes plus genes associated with pigmentation. We also used network properties to prioritize genes within pigmentation modules as candidate susceptibility genes. Integrating information from coexpression network analysis and variant prioritization, we identified 36 genes (such as DCT, TPCN2, TRPM1, ATP10A, and EPHA5) as potential melanoma risk genes in the families. Our approach also allowed us to link families with private gene mutations on the basis of gene coexpression patterns and thereby may provide an innovative perspective in gene identification in high-risk families.


Subject(s)
Melanoma , Skin Neoplasms , Exome/genetics , Genetic Predisposition to Disease , Humans , Melanoma/genetics , Skin Neoplasms/genetics , Exome Sequencing , Melanoma, Cutaneous Malignant
17.
Fam Cancer ; 21(3): 347-355, 2022 07.
Article in English | MEDLINE | ID: mdl-34215961

ABSTRACT

While several high-penetrance melanoma risk genes are known, variation in these genes fail to explain melanoma susceptibility in a large proportion of high-risk families. As part of a melanoma family sequencing study, including 435 families from Mediterranean populations we identified a novel NRAS variant (c.170A > C, p.D57A) in an Italian melanoma-prone family. This variant is absent in exomes in gnomAD, ESP, UKBiobank, and the 1000 Genomes Project, as well as in 11,273 Mediterranean individuals and 109 melanoma-prone families from the US and Australia. This variant occurs in the GTP-binding pocket of NRAS. Differently from other RAS activating alterations, NRAS D57A expression is unable to activate MAPK-pathway both constitutively and after stimulation but enhances EGF-induced PI3K-pathway signaling in serum starved conditions in vitro. Consistent with in vitro data demonstrating that NRAS D57A does not enrich GTP binding, molecular modeling suggests that the D57A substitution would be expected to impair Mg2 + binding and decrease nucleotide-binding and GTPase activity of NRAS. While we cannot firmly establish NRAS c.170A > C (p.D57A) as a melanoma susceptibility variant, further investigation of NRAS as a familial melanoma gene is warranted.


Subject(s)
GTP Phosphohydrolases , Melanoma , Membrane Proteins , Skin Neoplasms , Cell Line, Tumor , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Germ-Line Mutation , Guanosine Triphosphate , Humans , Melanoma/genetics , Membrane Proteins/genetics , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins c-akt/genetics , Skin Neoplasms/genetics
18.
Fam Cancer ; 21(2): 211-227, 2022 04.
Article in English | MEDLINE | ID: mdl-34125377

ABSTRACT

The first International Workshop of the ATM and Cancer Risk group focusing on the role of Ataxia-Telangiectasia Mutated (ATM) gene in cancer was held on December 4 and 5, 2019 at Institut Curie in Paris, France. It was motivated by the fact that germline ATM pathogenic variants have been found to be associated with different cancer types. However, due to the lack of precise age-, sex-, and site-specific risk estimates, no consensus on management guidelines for variant carriers exists, and the clinical utility of ATM variant testing is uncertain. The meeting brought together epidemiologists, geneticists, biologists and clinicians to review current knowledge and on-going challenges related to ATM and cancer risk. This report summarizes the meeting sessions content that covered the latest results in family-based and population-based studies, the importance of accurate variant classification, the effect of radiation exposures for ATM variant carriers, and the characteristics of ATM-deficient tumors. The report concludes that ATM variant carriers outside of the context of Ataxia-Telangiectasia may benefit from effective cancer risk management and therapeutic strategies and that efforts to set up large-scale studies in the international framework to achieve this goal are necessary.


Subject(s)
Ataxia Telangiectasia , Breast Neoplasms , Neoplasms , Ataxia Telangiectasia/complications , Ataxia Telangiectasia/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Breast Neoplasms/complications , Female , France , Genetic Predisposition to Disease , Heterozygote , Humans , Neoplasms/diagnosis , Neoplasms/genetics
19.
Genet Med ; 24(1): 157-169, 2022 01.
Article in English | MEDLINE | ID: mdl-34906508

ABSTRACT

PURPOSE: More than half of the familial cutaneous melanomas have unknown genetic predisposition. This study aims at characterizing a novel melanoma susceptibility gene. METHODS: We performed exome and targeted sequencing in melanoma-prone families without any known melanoma susceptibility genes. We analyzed the expression of candidate gene DENND5A in melanoma samples in relation to pigmentation and UV signature. Functional studies were carried out using microscopic approaches and zebrafish model. RESULTS: We identified a novel DENND5A truncating variant that segregated with melanoma in a Swedish family and 2 additional rare DENND5A variants, 1 of which segregated with the disease in an American family. We found that DENND5A is significantly enriched in pigmented melanoma tissue. Our functional studies show that loss of DENND5A function leads to decrease in melanin content in vitro and pigmentation defects in vivo. Mechanistically, harboring the truncating variant or being suppressed leads to DENND5A losing its interaction with SNX1 and its ability to transport the SNX1-associated vesicles from melanosomes. Consequently, untethered SNX1-premelanosome protein and redundant tyrosinase are redirected to lysosomal degradation by default, causing decrease in melanin content. CONCLUSION: Our findings provide evidence of a physiological role of DENND5A in the skin context and link its variants to melanoma susceptibility.


Subject(s)
Guanine Nucleotide Exchange Factors/genetics , Melanoma , Skin Neoplasms , Animals , Genetic Predisposition to Disease , Humans , Melanoma/genetics , Melanosomes , Monophenol Monooxygenase/metabolism , Skin Neoplasms/genetics , Sorting Nexins , Exome Sequencing , Zebrafish/genetics
20.
Nat Genet ; 53(11): 1553-1563, 2021 11.
Article in English | MEDLINE | ID: mdl-34663923

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) shows remarkable variation in incidence that is not fully explained by known lifestyle and environmental risk factors. It has been speculated that an unknown exogenous exposure(s) could be responsible. Here we combine the fields of mutational signature analysis with cancer epidemiology to study 552 ESCC genomes from eight countries with varying incidence rates. Mutational profiles were similar across all countries studied. Associations between specific mutational signatures and ESCC risk factors were identified for tobacco, alcohol, opium and germline variants, with modest impacts on mutation burden. We find no evidence of a mutational signature indicative of an exogenous exposure capable of explaining differences in ESCC incidence. Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like (APOBEC)-associated mutational signatures single-base substitution (SBS)2 and SBS13 were present in 88% and 91% of cases, respectively, and accounted for 25% of the mutation burden on average, indicating that APOBEC activation is a crucial step in ESCC tumor development.


Subject(s)
Esophageal Neoplasms/epidemiology , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/epidemiology , Esophageal Squamous Cell Carcinoma/genetics , Mutation , APOBEC Deaminases/genetics , Adult , Aged , Aged, 80 and over , Aldehyde Dehydrogenase, Mitochondrial/genetics , Brazil/epidemiology , China/epidemiology , Female , Humans , Incidence , Iran/epidemiology , Male , Middle Aged , Tumor Suppressor Protein p53/genetics , United Kingdom/epidemiology , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...