Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Ophthalmol Ther ; 13(6): 1783-1798, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38696047

ABSTRACT

INTRODUCTION: This retrospective study explores the connection between preoperative patient risk factors, the experience of ophthalmology residents, and the outcomes of cataract surgeries performed at Hadassah Medical Center. It is hypothesized that with increased experience, residents may demonstrate greater proficiency in handling surgeries on higher-risk patients, potentially leading to improved surgical outcomes overall. METHODS: Data were examined from 691 consecutive cataract surgeries in 590 patients, conducted by ophthalmology residents at Hadassah Medical Center (January 2018 to February 2022). Demographics, surgeon experience, preoperative cataract risk assessment score, and pre- and postoperative corrected distance visual acuity (CDVA) were analyzed. The risk score was based on cataract density, previous vitrectomy, presence of phacodonesis, small pupil, extreme axial length (> 30 mm or < 21.5 mm) or abnormal axial length (26-30 mm), shallow anterior chamber (< 2.5 mm), poor patient cooperation, oral alpha-1 blocker use, diabetic retinopathy (DR), Fuchs endothelial dystrophy, and having one functioning eye. This study focused on the correlation of risk scores with residents' surgical experience and surgical outcomes. RESULTS: As residents gained experience, surgeries on patients with at least one risk factor increased from 54% (first year) to 75% (second year; p < 0.001) and fluctuated between 75%, 82%, and 77% (third, fourth, and fifth years, respectively), with initial preoperative CDVA declining progressively. Despite handling more complex cases over time, the percentage of intraoperative complications per patient decreased with each year of residents' experience (17%, 13%, 11%, 17%, 6%; respectively). Patients without any risk factor had higher postoperative CDVA than those with one or more risk factors (mean ± standard deviation [SD] in logMAR, 0.16 ± 0.26 vs. 0.27 ± 0.35; p < 0.001) and a higher percentage of CDVA improvement (63% vs. 57%, p = 0.016). CONCLUSIONS: The use of a preoperative risk assessment scoring system to allocate surgeries to residents at varying experience levels may reduce the risk for surgical complications, thereby ensuring patient safety and providing residents with a gradual learning experience.

2.
Bioengineering (Basel) ; 11(1)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38275577

ABSTRACT

This study primarily aimed at developing a novel multi-dimensional methodology to discover and validate the optimal number of clusters. The secondary objective was to deploy it for the task of clustering fibromyalgia patients. We present a comprehensive methodology that includes the use of several different clustering algorithms, quality assessment using several syntactic distance measures (the Silhouette Index (SI), Calinski-Harabasz index (CHI), and Davies-Bouldin index (DBI)), stability assessment using the adjusted Rand index (ARI), and the validation of the internal semantic consistency of each clustering option via the performance of multiple clustering iterations after the repeated bagging of the data to select multiple partial data sets. Then, we perform a statistical analysis of the (clinical) semantics of the most stable clustering options using the full data set. Finally, the results are validated through a supervised machine learning (ML) model that classifies the patients back into the discovered clusters and is interpreted by calculating the Shapley additive explanations (SHAP) values of the model. Thus, we refer to our methodology as the clustering, distance measures and iterative statistical and semantic validation (CDI-SSV) methodology. We applied our method to the analysis of a comprehensive data set acquired from 1370 fibromyalgia patients. The results demonstrate that the K-means was highly robust in the syntactic and the internal consistent semantics analysis phases and was therefore followed by a semantic assessment to determine the optimal number of clusters (k), which suggested k = 3 as a more clinically meaningful solution, representing three distinct severity levels. the random forest model validated the results by classification into the discovered clusters with high accuracy (AUC: 0.994; accuracy: 0.946). SHAP analysis emphasized the clinical relevance of "functional problems" in distinguishing the most severe condition. In conclusion, the CDI-SSV methodology offers significant potential for improving the classification of complex patients. Our findings suggest a classification system for different profiles of fibromyalgia patients, which has the potential to improve clinical care, by providing clinical markers for the evidence-based personalized diagnosis, management, and prognosis of fibromyalgia patients.

3.
Ophthalmic Physiol Opt ; 43(3): 337-346, 2023 05.
Article in English | MEDLINE | ID: mdl-36660882

ABSTRACT

PURPOSE: Ultra-Orthodox Jewish men are known to have a high prevalence of myopia, which may be due to intense near-work from an early age. This study objectively assessed near-viewing behaviours in ultra-Orthodox and non-ultra-Orthodox men in Israel for different tasks. METHODS: Ultra-Orthodox (n = 30) and non-ultra-Orthodox (n = 38) men aged 18-33 years participated. Autorefraction, visual acuity, height and Harmon distance were measured. An objective range-finding sensor was mounted on their spectacles while they performed four 10-min tasks in a randomised order: (1) reading printed material, (2) writing printed material, (3) passive electronic and (4) active electronic tasks. Near-viewing distance and the number of viewing breaks were calculated for each task. Statistical analyses included Student t-tests and the Mann-Whitney test between groups and repeated measures ANOVA or Friedman between tasks. RESULTS: For all tasks combined, a significantly shorter viewing distance was observed for the ultra-Orthodox group (36.2 ± 7.0 cm) than for the non-ultra-Orthodox group (39.6 ± 6.7 cm, p < 0.05). Viewing distances for the passive reading and electronic tasks were shorter for the ultra-Orthodox group (36.9 ± 7.7 cm vs. 41.3 ± 8.1 cm, p < 0.03 and 39.0 ± 10.1 vs. 43.9 ± 9.3, p < 0.05, respectively). Viewing distances were significantly different between all four tasks, with writing having the closest distance. No correlation was found between working distance and spherical equivalent or Harmon distance. However, a significant correlation was found in the ultra-Orthodox group between working distance and height for each task (p < 0.04, R < 0.42 for all). There was no difference in the number of viewing breaks between the groups. CONCLUSION: When reading a book and viewing an iPad, ultra-Orthodox men demonstrated a closer objective working distance than non-ultra-Orthodox men. This shorter viewing distance may contribute to the high prevalence and degree of myopia in this population.


Subject(s)
Jews , Myopia , Male , Humans , Myopia/therapy , Refraction, Ocular , Visual Acuity , Israel/epidemiology
4.
Artif Intell Med ; 129: 102324, 2022 07.
Article in English | MEDLINE | ID: mdl-35659389

ABSTRACT

BACKGROUND: Traditionally guideline (GL)-based Decision Support Systems (DSSs) use a centralized infrastructure to generate recommendations to care providers, rather than to patients at home. However, managing patients at home is often preferable, reducing costs and empowering patients. Thus, we wanted to explore an option in which patients, in particular chronic patients, might be assisted by a local DSS, which interacts as needed with the central DSS engine, to manage their disease outside the standard clinical settings. OBJECTIVES: To design, implement, and demonstrate the technical and clinical feasibility of a new architecture for a distributed DSS that provides patients with evidence-based guidance, offered through applications running on the patients' mobile devices, monitoring and reacting to changes in the patient's personal environment, and providing the patients with appropriate GL-based alerts and personalized recommendations; and increase the overall robustness of the distributed application of the GL. METHODS: We have designed and implemented a novel projection-callback (PCB) model, in which small portions of the evidence-based guideline's procedural knowledge are projected from a projection engine within the central DSS server, to a local DSS that resides on each patient's mobile device. The local DSS applies the knowledge using the mobile device's local resources. The GL projections generated by the projection engine are adapted to the patient's previously defined preferences and, implicitly, to the patient's current context, in a manner that is embodied in the projected therapy plans. When appropriate, as defined by a temporal pattern within the projected plan, the local DSS calls back the central DSS, requesting further assistance, possibly another projection. To support the new model, the initial specification of the GL includes two levels: one for the central DSS, and one for the local DSS. We have implemented a distributed GL-based DSS using the projection-callback model within the MobiGuide EU project, which automatically manages chronic patients at home using sensors on the patients and their mobile phone. We assessed the new GL specification process, by specifying two very different, complex GLs: for Gestational Diabetes Mellitus, and for Atrial Fibrillation. Then, we evaluated the new computational architecture by applying the two GLs to the automated clinical management, at real time, of patients in two different countries: Spain and Italy, respectively. RESULTS: The specification using the new projection-callback model was found to be quite feasible. We found significant differences between the distributed versions of the two GLs, suggesting further research directions and possibly additional ways to analyze and characterize GLs. Applying the two GLs to the two patient populations proved highly feasible as well. The mean time between the central and local interactions was quite different for the two GLs: 3.95 ± 1.95 days in the case of the gestational diabetes domain, and 23.80 ± 12.47 days, in the case of the atrial fibrillation domain, probably corresponding to the difference in the distributed specifications of the two GLs. Most of the interaction types were due to projections to the local DSS (83%); others were data notifications, mostly to change context (17%). Some of the data notifications were triggered due to technical errors. The robustness of the distributed architecture was demonstrated through the successful recovery from multiple crashes of the local DSS. CONCLUSIONS: The new projection-callback model has been demonstrated to be feasible, from specification to distributed application. Different GLs might significantly differ, however, in their distributed specification and application characteristics. Distributed medical DSSs can facilitate the remote management of chronic patients by enabling the central DSSs to delegate, in a dynamic fashion, determined by the patient's context, much of the monitoring and treatment management decisions to the mobile device. Patients can be kept in their home environment, while still maintaining, through the projection-callback mechanism, several of the advantages of a central DSS, such as access to the patient's longitudinal record, and to an up-to-date evidence-based GL repository.


Subject(s)
Mobile Applications , Decision Making, Computer-Assisted , Humans
5.
Artif Intell Med ; 82: 20-33, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28958803

ABSTRACT

OBJECTIVES: To examine the feasibility of the automated creation of meaningful free-text summaries of longitudinal clinical records, using a new general methodology that we had recently developed; and to assess the potential benefits to the clinical decision-making process of using such a method to generate draft letters that can be further manually enhanced by clinicians. METHODS: We had previously developed a system, CliniText (CTXT), for automated summarization in free text of longitudinal medical records, using a clinical knowledge base. In the current study, we created an Intensive Care Unit (ICU) clinical knowledge base, assisted by two ICU clinical experts in an academic tertiary hospital. The CTXT system generated free-text summary letters from the data of 31 different patients, which were compared to the respective original physician-composed discharge letters. The main evaluation measures were (1) relative completeness, quantifying the data items missed by one of the letters but included by the other, and their importance; (2) quality parameters, such as readability; (3) functional performance, assessed by the time needed, by three clinicians reading each of the summaries, to answer five key questions, based on the discharge letter (e.g., "What are the patient's current respiratory requirements?"), and by the correctness of the clinicians' answers. RESULTS: Completeness: In 13/31 (42%) of the letters the number of important items missed in the CTXT-generated letter was actually less than or equal to the number of important items missed by the MD-composed letter. In each of the MD-composed letters, at least two important items that were mentioned by the CTXT system were missed (a mean of 7.2±5.74). In addition, the standard deviation in the number of missed items in the MD letters (STD=15.4) was much higher than the standard deviation in the CTXT-generated letters (STD=5.3). Quality: The MD-composed letters obtained a significantly better grade in three out of four measured parameters. However, the standard variation in the quality of the MD-composed letters was much greater than the standard variation in the quality of the CTXT-generated letters (STD=6.25 vs. STD=2.57, respectively). Functional evaluation: The clinicians answered the five questions on average 40% faster (p<0.001) when using the CTXT-generated letters than when using the MD-composed letters. In four out of the five questions the clinicians' correctness was equal to or significantly better (p<0.005) when using the CTXT-generated letters than when using the MD-composed letters. CONCLUSIONS: An automatic knowledge-based summarization system, such as the CTXT system, has the capability to model complex clinical domains, such as the ICU, and to support interpretation and summarization tasks such as the creation of a discharge summary letter. Based on the results, we suggest that the use of such systems could potentially enhance the standardization of the letters, significantly increase their completeness, and reduce the time to write the discharge summary. The results also suggest that using the resultant structured letters might reduce the decision time, and enhance the decision quality, of decisions made by other clinicians.


Subject(s)
Critical Care , Electronic Health Records , Intensive Care Units , Knowledge Bases , Medical Informatics/methods , Natural Language Processing , Patient Discharge Summaries , Automation , Continuity of Patient Care , Feasibility Studies , Health Status , Humans , Length of Stay , Retrospective Studies , Tertiary Care Centers , Time Factors
6.
Int J Med Inform ; 101: 108-130, 2017 05.
Article in English | MEDLINE | ID: mdl-28347441

ABSTRACT

OBJECTIVES: The MobiGuide project aimed to establish a ubiquitous, user-friendly, patient-centered mobile decision-support system for patients and for their care providers, based on the continuous application of clinical guidelines and on semantically integrated electronic health records. Patients would be empowered by the system, which would enable them to lead their normal daily lives in their regular environment, while feeling safe, because their health state would be continuously monitored using mobile sensors and self-reporting of symptoms. When conditions occur that require medical attention, patients would be notified as to what they need to do, based on evidence-based guidelines, while their medical team would be informed appropriately, in parallel. We wanted to assess the system's feasibility and potential effects on patients and care providers in two different clinical domains. MATERIALS AND METHODS: We describe MobiGuide's architecture, which embodies these objectives. Our novel methodologies include a ubiquitous architecture, encompassing a knowledge elicitation process for parallel coordinated workflows for patients and care providers; the customization of computer-interpretable guidelines (CIGs) by secondary contexts affecting remote management and distributed decision-making; a mechanism for episodic, on demand projection of the relevant portions of CIGs from a centralized, backend decision-support system (DSS), to a local, mobile DSS, which continuously delivers the actual recommendations to the patient; shared decision-making that embodies patient preferences; semantic data integration; and patient and care provider notification services. MobiGuide has been implemented and assessed in a preliminary fashion in two domains: atrial fibrillation (AF), and gestational diabetes Mellitus (GDM). Ten AF patients used the AF MobiGuide system in Italy and 19 GDM patients used the GDM MobiGuide system in Spain. The evaluation of the MobiGuide system focused on patient and care providers' compliance to CIG recommendations and their satisfaction and quality of life. RESULTS: Our evaluation has demonstrated the system's capability for supporting distributed decision-making and its use by patients and clinicians. The results show that compliance of GDM patients to the most important monitoring targets - blood glucose levels (performance of four measurements a day: 0.87±0.11; measurement according to the recommended frequency of every day or twice a week: 0.99±0.03), ketonuria (0.98±0.03), and blood pressure (0.82±0.24) - was high in most GDM patients, while compliance of AF patients to the most important targets was quite high, considering the required ECG measurements (0.65±0.28) and blood-pressure measurements (0.75±1.33). This outcome was viewed by the clinicians as a major potential benefit of the system, and the patients have demonstrated that they are capable of self-monitoring - something that they had not experienced before. In addition, the system caused the clinicians managing the AF patients to change their diagnosis and subsequent treatment for two of the ten AF patients, and caused the clinicians managing the GDM patients to start insulin therapy earlier in two of the 19 patients, based on system's recommendations. Based on the end-of-study questionnaires, the sense of safety that the system has provided to the patients was its greatest asset. Analysis of the patients' quality of life (QoL) questionnaires for the AF patients was inconclusive, because while most patients reported an improvement in their quality of life in the EuroQoL questionnaire, most AF patients reported a deterioration in the AFEQT questionnaire. DISCUSSION: Feasibility and some of the potential benefits of an evidence-based distributed patient-guidance system were demonstrated in both clinical domains. The potential application of MobiGuide to other medical domains is supported by its standards-based patient health record with multiple electronic medical record linking capabilities, generic data insertion methods, generic medical knowledge representation and application methods, and the ability to communicate with a wide range of sensors. Future larger scale evaluations can assess the impact of such a system on clinical outcomes. CONCLUSION: MobiGuide's feasibility was demonstrated by a working prototype for the AF and GDM domains, which is usable by patients and clinicians, achieving high compliance to self-measurement recommendations, while enhancing the satisfaction of patients and care providers.


Subject(s)
Atrial Fibrillation/therapy , Decision Support Systems, Clinical , Diabetes, Gestational/therapy , Practice Guidelines as Topic/standards , Adult , Computer Communication Networks , Decision Making , Electronic Health Records , Female , Guideline Adherence , Humans , Pregnancy , Quality of Life
7.
J Biomed Inform ; 61: 159-75, 2016 06.
Article in English | MEDLINE | ID: mdl-27039119

ABSTRACT

OBJECTIVES: Design and implement an intelligent free-text summarization system: The system's input includes large numbers of longitudinal, multivariate, numeric and symbolic clinical raw data, collected over varying periods of time, and in different complex contexts, and a suitable medical knowledge base. The system then automatically generates a textual summary of the data. We aim to prove the feasibility of implementing such a system, and to demonstrate its potential benefits for clinicians and for enhancement of quality of care. METHODS: We have designed a new, domain-independent, knowledge-based system, the CliniText system, for automated summarization in free text of longitudinal medical records of any duration, in any context. The system is composed of six components: (1) A temporal abstraction module generates all possible abstractions from the patient's raw data using a temporal-abstraction knowledge base; (2) The abductive reasoning module infers abstractions or events from the data, which were not explicitly included in the database; (3) The pruning module filters out raw or abstract data based on predefined heuristics; (4) The document structuring module organizes the remaining raw or abstract data, according to the desired format; (5) The microplanning module, groups the raw or abstract data and creates referring expressions; (6) The surface realization module, generates the text, and applies the grammar rules of the chosen language. We have performed an initial technical evaluation of the system in the cardiac intensive-care and diabetes domains. We also summarize the results of a more detailed evaluation study that we have performed in the intensive-care domain that assessed the completeness, correctness, and overall quality of the system's generated text, and its potential benefits to clinical decision making. We assessed these measures for 31 letters originally composed by clinicians, and for the same letters when generated by the CliniText system. RESULTS: We have successfully implemented all of the components of the CliniText system in software. We have also been able to create a comprehensive temporal-abstraction knowledge base to support its functionality, mostly in the intensive-care domain. The initial technical evaluation of the system in the cardiac intensive-care and diabetes domains has shown great promise, proving the feasibility of constructing and operating such systems. The detailed results of the evaluation in the intensive-care domain are out of scope of the current paper, and we refer the reader to a more detailed source. In all of the letters composed by clinicians, there were at least two important items per letter missed that were included by the CliniText system. The clinicians' letters got a significantly better grade in three out of four measured quality parameters, as judged by an expert; however, the variance in the quality was much higher in the clinicians' letters. In addition, three clinicians answered questions based on the discharge letter 40% faster, and answered four out of the five questions equally well or significantly better, when using the CliniText-generated letters, than when using the clinician-composed letters. CONCLUSIONS: Constructing a working system for automated summarization in free text of large numbers of varying periods of multivariate longitudinal clinical data is feasible. So is the construction of a large knowledge base, designed to support such a system, in a complex clinical domain, such as the intensive-care domain. The integration of the quality and functionality results suggests that the optimal discharge letter should exploit both human and machine, possibly by creating a machine-generated draft that will be polished by a human clinician.


Subject(s)
Electronic Health Records , Knowledge Bases , Software , Automation , Humans , Machine Learning , Natural Language Processing , Patient Discharge
8.
Stud Health Technol Inform ; 216: 594-8, 2015.
Article in English | MEDLINE | ID: mdl-26262120

ABSTRACT

Physicians are required to interpret, abstract and present in free-text large amounts of clinical data in their daily tasks. This is especially true for chronic-disease domains, but holds also in other clinical domains. We have recently developed a prototype system, CliniText, which, given a time-oriented clinical database, and appropriate formal abstraction and summarization knowledge, combines the computational mechanisms of knowledge-based temporal data abstraction, textual summarization, abduction, and natural-language generation techniques, to generate an intelligent textual summary of longitudinal clinical data. We demonstrate our methodology, and the feasibility of providing a free-text summary of longitudinal electronic patient records, by generating summaries in two very different domains - Diabetes Management and Cardiothoracic surgery. In particular, we explain the process of generating a discharge summary of a patient who had undergone a Coronary Artery Bypass Graft operation, and a brief summary of the treatment of a diabetes patient for five years.


Subject(s)
Electronic Health Records/classification , Information Storage and Retrieval/methods , Knowledge Bases , Machine Learning , Natural Language Processing , Vocabulary, Controlled , Longitudinal Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...