Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Bioact Mater ; 32: 98-123, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37927899

ABSTRACT

Tissue engineering and regenerative medicine have shown potential in the repair and regeneration of tissues and organs via the use of engineered biomaterials and scaffolds. However, current constructs face limitations in replicating the intricate native microenvironment and achieving optimal regenerative capacity and functional recovery. To address these challenges, the utilization of decellularized tissues and cell-derived extracellular matrix (ECM) has emerged as a promising approach. These biocompatible and bioactive biomaterials can be engineered into porous scaffolds and grafts that mimic the structural and compositional aspects of the native tissue or organ microenvironment, both in vitro and in vivo. Bioactive dECM materials provide a unique tissue-specific microenvironment that can regulate and guide cellular processes, thereby enhancing regenerative therapies. In this review, we explore the emerging frontiers of decellularized tissue-derived and cell-derived biomaterials and bio-inks in the field of tissue engineering and regenerative medicine. We discuss the need for further improvements in decellularization methods and techniques to retain structural, biological, and physicochemical characteristics of the dECM products in a way to mimic native tissues and organs. This article underscores the potential of dECM biomaterials to stimulate in situ tissue repair through chemotactic effects for the development of growth factor and cell-free tissue engineering strategies. The article also identifies the challenges and opportunities in developing sterilization and preservation methods applicable for decellularized biomaterials and grafts and their translation into clinical products.

2.
Ann Biomed Eng ; 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36952144

ABSTRACT

Biomaterials that recapitulate the native in vivo microenvironment are promising to facilitate tissue repair and regeneration when used in combination with relevant growth factors (GFs), chemokines, cytokines, and other small molecules and cell sources. However, limitations with the use of exogenous factors and ex vivo cell expansion has prompted cell-/GF-free tissue engineering strategies. Additionally, conventional chemotaxis assays for studying cell migration behavior provide limited information, lack long-term stability, and fail to recapitulate physiologically relevant conditions. In this study, articular cartilage tissue-based biomaterials were developed via a rapid tissue decellularization protocol. The decellularized tissue was further processed into a hydrogel through solubilization and self-assembly. Chemotactic activity of the tissue-derived gel was investigated using sophisticated cellular migration assays. These tissue-derived extracellular matrix (ECM) biomaterials retain biochemical cues of native tissue and stimulate the chemotactic migration of hBMSCs in 2D and 3D cell migration models using a real-time chemotaxis assay. This strategy, in a way, developed a new paradigm in tissue engineering where cartilage tissue repair and regeneration can be approached with decellularized cartilage tissue in the place of an engineered matrix. This strategy can be further expanded for other tissue-based ECMs to develop cell-/GF-free tissue engineering and regenerative medicine strategies for recruiting endogenous cell populations to facilitate tissue repair and regeneration.

3.
Biomater Sci ; 10(11): 2789-2816, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35510605

ABSTRACT

There are more than 2 million bone grafting procedures performed annually in the US alone. Despite significant efforts, the repair of large segmental bone defects is a substantial clinical challenge which requires bone substitute materials or a bone graft. The available biomaterials lack the adequate mechanical strength to withstand the static and dynamic loads while maintaining sufficient porosity to facilitate cell in-growth and vascularization during bone tissue regeneration. A wide range of advanced biomaterials are being currently designed to mimic the physical as well as the chemical composition of a bone by forming polymer blends, polymer-ceramic and polymer-degradable metal composites. Transforming these novel biomaterials into porous and load-bearing structures via three-dimensional printing (3DP) has emerged as a popular manufacturing technique to develop engineered bone grafts. 3DP has been adopted as a versatile tool to design and develop bone grafts that satisfy porosity and mechanical requirements while having the ability to form grafts of varied shapes and sizes to meet the physiological requirements. In addition to providing surfaces for cell attachment and eventual bone formation, these bone grafts also have to provide physical support during the repair process. Hence, the mechanical competence of the 3D-printed scaffold plays a key role in the success of the implant. In this review, we present various recent strategies that have been utilized to design and develop robust biomaterials that can be deployed for 3D-printing bone substitutes. The article also reviews some of the practical, theoretical and biological considerations adopted in the 3D-structure design and development for bone tissue engineering.


Subject(s)
Biocompatible Materials , Bone Substitutes , Biocompatible Materials/chemistry , Bone Regeneration , Bone Substitutes/chemistry , Polymers , Porosity , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds/chemistry
4.
Biofabrication ; 14(2)2022 02 25.
Article in English | MEDLINE | ID: mdl-35147514

ABSTRACT

Design and development of scaffold structures for osteochondral (OC) interface regeneration is a significant engineering challenge. Recent efforts are aimed at recapitulating the unique compositional and hierarchical structure of an OC interface. Conventional scaffold fabrication techniques often have limited design control and reproducibility, and the development of OC scaffolds with zonal hierarchy and structural integrity between zones is especially challenging. In this study, a series of multi-zonal and gradient structures were designed and fabricated using three-dimensional bioprinting. We developed OC scaffolds with bi-phasic and tri-phasic configurations to support the zonal structure of OC tissue, and gradient scaffold configurations to enable smooth transitions between the zones to more closely mimic a bone-cartilage interface. A biodegradable polymer, polylactic acid, was used for the fabrication of zonal/gradient scaffolds to provide mechanical strength and support OC function. The formation of the multi-zonal and gradient scaffolds was confirmed through scanning electron microscopy imaging and micro-computed tomography scanning. Precisely controlled hierarchy with tunable porosity along the scaffold length established the formation of the bio-inspired scaffolds with different zones/gradient structure. In addition, we also developed a novel bioprinting method to selectively introduce cells into desired scaffold zones of the zonal/gradient scaffolds via concurrent printing of a cell-laden hydrogel within the porous template. Live/dead staining of the cell-laden hydrogel introduced in the cartilage zone showed uniform cell distribution with high cell viability. Overall, our study developed bio-inspired scaffold structures with structural hierarchy and mechanical integrity for bone-cartilage interface engineering.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Cartilage , Hydrogels/chemistry , Printing, Three-Dimensional , Reproducibility of Results , Tissue Engineering/methods , Tissue Scaffolds/chemistry , X-Ray Microtomography
5.
Tissue Eng Part A ; 26(19-20): 1052-1063, 2020 10.
Article in English | MEDLINE | ID: mdl-32375566

ABSTRACT

Despite progress, clinical translation of tissue engineering (TE) products/technologies is limited. A significant effort is underway to develop biomaterials and cells through a minimally modified process for clinical translation of TE products. Recently, bone marrow aspirate (BMA) was identified as an autologous source of cells for TE applications and is currently being tested in clinical therapies, but the isolation methods need improvement to avoid potential for contamination and increase progenitor cell yield. To address these issues, we reproducibly processed human peripheral blood (PB) and BMA to develop autologously derived biomaterials and cells. We demonstrated PB-derived biomaterial/gel cross-linking and fibrin gel formation with varied gelation times as well as biocompatibility through support of human bone marrow-derived stem cell survival and growth in vitro. Next, we established a plastic culture-free process that concentrates and increases the yield of CD146+/CD271+ early mesenchymal progenitor cells in BMA (concentrated BMA [cBMA]). cBMA exhibited increased colony formation and multipotency (including chondrogenic differentiation) in vitro compared with standard BMA. PB-derived gels encapsulated with cBMA also demonstrated increased cell proliferation and enhanced mineralization when assessed for bone TE in vitro. This strategy can potentially be developed for use in any tissue regeneration application; however, bone regeneration was used as a test bed for this study.


Subject(s)
Biocompatible Materials , Bone and Bones , Mesenchymal Stem Cells , Tissue Engineering , Adult , Cell Differentiation , Cells, Cultured , Female , Humans , Male , Middle Aged , Young Adult
6.
Ann Biomed Eng ; 48(3): 992-1005, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31037444

ABSTRACT

Despite its regenerative ability, long and segmental bone defect repair remains a significant orthopedic challenge. Conventional tissue engineering efforts induce bone formation through intramembranous ossification (IO) which limits vascular formation and leads to poor bone regeneration. To overcome this challenge, a novel hybrid matrix comprised of a load-bearing polymer template and a gel phase is designed and assessed for bone regeneration. Our previous studies developed a synthetic ECM, hyaluronan (HA)-fibrin (FB), that is able to mimic cartilage-mediated bone formation in vitro. In this study, the well-characterized HA-FB hydrogel is combined with a biodegradable polymer template to form a hybrid matrix. In vitro evaluation of the matrix showed cartilage template formation, cell recruitment and recruited cell osteogenesis, essential stages in endochondral ossification. A transgenic reporter-mouse critical-defect model was used to evaluate the bone healing potential of the hybrid matrix in vivo. The results demonstrated host cell recruitment into the hybrid matrix that led to new bone formation and subsequent remodeling of the mineralization. Overall, the study developed and evaluated a novel load-bearing graft system for bone regeneration via endochondral ossification.


Subject(s)
Bone Regeneration , Mesenchymal Stem Cells/physiology , Osteogenesis , Skull/physiology , Tissue Engineering/methods , Animals , Cells, Cultured , Extracellular Matrix , Fibrin , Humans , Hyaluronic Acid , Hydrogels , Mice, SCID , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...