Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Genet ; 63(1): 73-86, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34561842

ABSTRACT

Triticale is a cereal of high economic importance; however, along with the increase in the area of this cereal, it is more often infected by the fungal pathogen Blumeria graminis, which causes powdery mildew. The rapid development of molecular biology techniques, in particular methods based on molecular markers may be an important tool used in modern plant breeding. Development of genetic maps, location of the QTLs defining the region of the genome associated with resistance and selection of markers linked to particular trait can be used to select resistant genotypes as well as to pyramidize several resistance genes in one variety. In this paper, we present a new, high-density genetic map of triticale doubled haploids (DH) population "Grenado" × "Zorro" composed of DArT, silicoDArT, and SNP markers. Composite interval mapping method was used to detect eight QTL regions associated with the area under disease progress curve (AUDPC) and 15 regions with the average value of powdery mildew infection (avPM) based on observation conducted in 3-year period in three different locations across the Poland. Two regions on rye chromosome 4R, and single loci on 5R and 6R were reported for the first time as regions associated with powdery mildew resistance. Among all QTLs, 14 candidate genes were identified coded cyclin-dependent kinase, serine/threonine-protein kinase-like protein as well as AMEIOTIC 1 homolog DYAD-like protein, DETOXIFICATION 16-like protein, and putative disease resistance protein RGA3. Three of identified candidate genes were found among newly described QTL regions associated with powdery mildew resistance in triticale.


Subject(s)
Triticale , Chromosome Mapping , Disease Resistance/genetics , Genes, Plant , Plant Breeding , Plant Diseases/genetics
2.
Plants (Basel) ; 10(12)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34961149

ABSTRACT

Tolerance to pink snow mold caused by Microdochium nivale appears after a cold-hardening period and it is an essential, genotype-dependent, complex quantitative trait for the wintering of triticale (x Triticosecale) and other cereals. Despite long-term studies, a marker for the selection of the tolerant genotypes is still insufficiently recognized. Chlorophyll fluorescence has been reported as a sensitive indicator of stress effects on photosynthesis and can be used to predict plant tolerance. In this study, the genomic regions (QTLs) associated with the level of winter triticale seedlings damage caused by M. nivale infection as well as photosynthesis quantum efficiency and chlorophyll a fluorescence parameters were identified in seedlings of mapping population of 89 doubled haploids lines (DHs) derived from F1 hybrid of cv. 'Hewo' and cv. 'Magnat' accompanied with the genetic map consisting of 20 linkage groups with a total map length 4997.4 cm. Independent experiments performed in controlled conditions revealed 13 regions identified by a composite interval mapping, located on 7A, 1B, 2B, 6B, 7B, 3R, 5R, and 6R linkage groups and related to the PI, PIABS, TRo/CS, ABS/CS, ABS/CSm, ABS/RC, and Qy values as well as M. nivale tolerance T and susceptibility level P expressed by the seedling damage index. Additionally, candidate genes were in silico identified with the sequence position on wheat (2B and 7B) and rye (5R) chromosomes, where relevant QTL regions were found. The most important candidate genes indicated for M. nivale tolerance of cold-hardened triticale seedlings include those coding: sterol 3-beta-glucosyltransferase UGT80A2-like, transcription factor NAI1-like, and flavonol3-sulfotransferase-like proteins on chromosomes 2B and 5R.

3.
Sci Rep ; 11(1): 22215, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34782682

ABSTRACT

Effective microspore embryogenesis (ME) requires substantial modifications in gene expression pattern, followed by changes in the cell proteome and its metabolism. Recent studies have awakened also interest in the role of epigenetic factors in microspore de-differentiation and reprogramming. Therefore, demethylating agent (2.5-10 µM 5-azacytidine, AC) together with low temperature (3 weeks at 4 °C) were used as ME-inducing tiller treatment in two doubled haploid (DH) lines of triticale and its effect was analyzed in respect of anther protein profiles, expression of selected genes (TAPETUM DETERMINANT1 (TaTPD1-like), SOMATIC EMBRYOGENESIS RECEPTOR KINASE 2 (SERK2) and GLUTATHIONE S-TRANSFERASE (GSTF2)) and ME efficiency. Tiller treatment with 5.0 µM AC was the most effective in ME induction; it was associated with (1) suppression of intensive anabolic processes-mainly photosynthesis and light-dependent reactions, (2) transition to effective catabolism and mobilization of carbohydrate reserve to meet the high energy demand of cells during microspore reprograming and (3) effective defense against stress-inducing treatment, i.e. protection of proper folding during protein biosynthesis and effective degradation of dysfunctional or damaged proteins. Additionally, 5.0 µM AC enhanced the expression of all genes previously identified as being associated with embryogenic potential of microspores (TaTPD1-like, SERK and GSTF2).


Subject(s)
Azacitidine/pharmacology , Embryonic Development , Proteome , Proteomics , Triticale/drug effects , Triticale/metabolism , Computational Biology/methods , Embryonic Development/genetics , Gene Expression Regulation, Plant/drug effects , Plant Development/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Proteomics/methods , Triticale/genetics
4.
Acta Biochim Pol ; 66(3): 343-350, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31509370

ABSTRACT

Two winter triticale (x Triticosecale Wittmack) model cultivars: Hewo (tolerant to pink snow mould) and Magnat (sensitive) were used to test the effect of cold-hardening (4 weeks at 4°C) on soluble ≤50 kDa protein profiles of the seedling leaves. The presence and abundance of individual proteins were analysed via two-dimensional gel electrophoresis (2-DE) and Surface-Enhanced Laser Desorption/Ionization Time-of-Flight (SELDI-TOF). Up to now, no proteomics analysis of triticale response to hardening has been performed. Thus, the present paper is the first in the series describing the obtained results. In our experiments, the exposure to the low temperature-induced only quantitative changes in the leaves of both cultivars, causing either an increase or decrease of 4-50 kDa protein abundance. Among proteins which were cold-accumulated in cv. Hewo's leaves, we identified two thioredoxin peroxidases (chloroplastic thiol-specific antioxidant proteins) as well as mitochondrial- ß-ATP synthase subunit and ADP-binding resistance protein. On the contrary, in hardened seedlings of this genotype, we observed the decreased level of chloroplastic RuBisCO small subunit PW9 and epidermal peroxidase 10. Simultaneous SELDI-TOF analysis revealed several low mass proteins better represented in cold-hardened plants of tolerant genotype in comparison to the sensitive one and the impact of both genotype and temperature on their level. Based on those results, we suggest that indicated proteins might be potential candidates for molecular markers of cold-induced snow mould resistance of winter triticale and their role is worth to be investigated in the further inoculation experiments.


Subject(s)
Cold Temperature , Disease Resistance , Mycoses/microbiology , Plant Diseases/microbiology , Plant Proteins/metabolism , Seedlings/microbiology , Triticale/microbiology , Xylariales/isolation & purification , ATP Synthetase Complexes , Arabidopsis Proteins , Edible Grain/microbiology , Electrophoresis, Gel, Two-Dimensional , Genotype , Peroxiredoxins , Plant Leaves/metabolism , Plant Leaves/microbiology , Seedlings/metabolism , Snow/microbiology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Triticale/metabolism
5.
J Agric Food Chem ; 58(11): 6912-22, 2010 Jun 09.
Article in English | MEDLINE | ID: mdl-20441221

ABSTRACT

The seed proteome of a low phytic acid (lpa) rice line (Os-lpa-XS110-1), developed as a novel food source, was compared to that of its parental line, Xiushui 110 (XS-110). Analysis by surfaced enhanced laser desorption ionization-time-of-flight mass spectrometry (SELDI-TOF MS) and two-dimensional gel electrophoresis (2-DE) allowed the detection of a potential low molecular weight biomarker and identification of 23 differentially expressed proteins that include stress-related proteins, storage proteins, and potential allergens. Bioinformatic analyses revealed that triose phosphate isomerase (TPI) and fructose bisphosphatealdolase (FBA), two major differentially expressed proteins, are involved in myo-inositol metabolism. Accumulation of globulin was also significantly decreased in the lpa line. This study demonstrates the potential of proteomic and bioinformatic profiling techniques for safety assessment of novel foods. Furthermore, these techniques provide powerful tools for studying functional genomics due to the possibility of identifying genes related to the mutated traits.


Subject(s)
Computational Biology , Gene Expression Regulation, Plant , Oryza/genetics , Phytic Acid/metabolism , Plant Proteins/genetics , Proteomics , Electrophoresis, Gel, Two-Dimensional , Mass Spectrometry , Oryza/chemistry , Oryza/metabolism , Phytic Acid/analysis , Plant Proteins/analysis , Plant Proteins/metabolism
6.
Plant Cell Rep ; 28(8): 1279-87, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19551385

ABSTRACT

Isolated microspore cultures of two spring triticale (x Triticosecale Wittm.) cultivars were used to examine the effect of various stress treatments (either high--32 degrees C or low--5 degrees C temperature with or without nitrogen/carbohydrate starvation) applied to excised anthers on the effectiveness of microspore embryogenesis induction. To quantify the effects of pretreatment conditions, the activity of antioxidative enzymes (catalase, peroxidase and superoxide dismutase) together with respiration rate and heat emission were measured. It was observed that heat shock treatment applied as the only one stress factor increased the activity of antioxidative enzymes which suggests intensive generation of reactive oxygen species. Such pretreatment effectively triggered microspore reprogramming but drastically decreased microspore viability. After low temperature treatment, the activity of antioxidative enzymes was similar to the control subjected only with the stress originated from the transfer to in vitro culture conditions. This pretreatment decreased the number of microspores entering embryogenesis but sustained cell viability and this effect prevailed in the final estimation of microspore embryogenesis effectiveness. For both, low- and high-temperature treatments, interaction with starvation stress was beneficial increasing microspore viability (at 5 degrees C) or efficiency of embryogenesis induction (at 32 degrees C). The latter treatment significantly reduced cell metabolic activity. Physiological background of these effects seems to be different and some hypothetical explanations have been discussed. Received data indicate that in triticale, anther preculture conditions could generate oxidative stress and change the cell metabolic activity which could next be reflected in the cell viability and the efficiency of microspore embryogenesis.


Subject(s)
Edible Grain/genetics , Embryonic Development , Flowers/enzymology , Oxidative Stress , Carbohydrate Metabolism , Cell Respiration , Cells, Cultured , Cold Temperature , Edible Grain/embryology , Edible Grain/enzymology , Flowers/embryology , Flowers/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genes, Plant , Hot Temperature , Nitrogen/metabolism , Regeneration , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...