Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
ACS Appl Electron Mater ; 6(6): 4709-4717, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38947954

ABSTRACT

We report a semiconducting triindole-based discotic liquid crystal (TRISMe) functionalized with six p-methylthiophenyl groups at its periphery. While initially a crystalline solid at room temperature, TRISMe transitions to a columnar hexagonal mesophase upon heating and retains this supramolecular organization upon subsequent cooling, despite having only three flexible alkyl chains attached to the core's nitrogens. The incorporation of methylthio groups effectively hinders tight molecular packing, stabilizing the columnar arrangement of this disk-shaped molecule. Single crystal analysis confirmed the high tendency of this compound to organize into a columnar architecture and the role played by the methylthio groups in reinforcing such structure. The mesomorphic behavior of TRISMe provides an opportunity for processing from its molten state. Notably, our research reveals significant differences in charge transport depending on the processing method, whether solution drop-casting or melt-based. TRISMe shows hole mobility values averaging 3 × 10-1 cm2 V-1 s-1 when incorporated in diode-type devices from the isotropic melt and annealed at the mesophase temperature, estimated by SCLC (space-charge-limited current) measurements. However, when integrated into solution-processed organic field-effect transistors (OFETs), crystalline TRISMe exhibits a hole mobility of 3 × 10-4 cm2 V-1 s-1. The observed differences can be attributed to a beneficial supramolecular assembly achieved in the mesophase in spite of its lower order. These results emphasize the material's potential for applications in easy-to-process electronic devices and highlight the potential of methylthio moieties in promoting columnar mesophases.

2.
Chem Mater ; 36(9): 4343-4356, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38770010

ABSTRACT

Organic semiconductors with well-defined architectures pose a suitable alternative to amorphous silicon-based inorganic semiconductors. Encouraged by the development of organic semiconductors based on columnar liquid crystals, herein, we report on a family of C3-symmetric star-shaped mesogens based on triphenylamine (TPA), a functional unit with strong electron donor character. Highly stable columnar phases with high hole mobility values were obtained out of this nonplanar functional unit, and this was achieved by using flexible amide spacers to join the TPA units to a tris(triazolyl)triazine (T) star-shaped core, allowing the formation of intermolecular hydrogen bonds. The presence of hydrogen bonds results in a stabilization of the columnar architectures either in bulk or in the presence of solvents by reinforcing π-stacking and van der Waals interactions, as deduced by Fourier-transform infrared (FTIR) and X-ray diffraction (XRD) studies. Furthermore, the introduction of a stereogenic center in the flexible spacer prompts the formation of chiral aggregates in the liquid crystal state and in the organogel formed in 1-octanol, as demonstrated by circular dichroism spectroscopy.

3.
Inorg Chem ; 60(13): 9287-9301, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34126007

ABSTRACT

The synthesis and the electrochemical, photophysical, structural, and photoconductive properties of three new heteroleptic Pd(II) complexes with various 3',5'- disubstituted-2-(2'-pyridil) pyrroles H(N^N) as coordinated ligands are reported. The coordination of the metal center was completed by a functionalized Schiff base H(O^N) used as an ancillary ligand. The [(N^N)Pd(O^N)] complexes showed highly interesting photoconductive properties which have been correlated to their electronic and molecular structures. Theoretical density functional theory (DFT) and time-dependent DFT calculations were performed, and the results were confronted with the organization in crystalline phase, allowing to point out that the photoconductive properties are mainly a consequence of an efficient intramolecular ligand-to-metal charge transfer, combined to the proximity between the central metal and the donor moieties in the solid-state molecular stacks. The reported results confirm that these new Pd(II) complexes form a novel class of organometallic photoconductors with intrinsic characteristics suitable for molecular semiconductors applications.

4.
Int J Mol Sci ; 22(2)2021 Jan 16.
Article in English | MEDLINE | ID: mdl-33467214

ABSTRACT

Discotic (disk-shaped) molecules or molecular aggregates may form, within a certain temperature range, partially ordered phases, known as discotic liquid crystals, which have been extensively studied in the recent past. On the one hand, this interest was prompted by the fact that they represent models for testing energy and charge transport theories in organic materials. However, their long-range self-assembling properties, potential low cost, ease of processability with a variety of solvents and the relative ease of tailoring their properties via chemical synthesis, drove the attention of researchers also towards the exploitation of their semiconducting properties in organic electronic devices. This review covers recent research on the charge transport properties of discotic mesophases, starting with an introduction to their phase structure, followed by an overview of the models used to describe charge mobility in organic substances in general and in these systems in particular, and by the description of the techniques most commonly used to measure their charge mobility. The reader already familiar or not interested in such details can easily skip these sections and refer to the core section of this work, focusing on the most recent and significant results regarding charge mobility in discotic liquid crystals.


Subject(s)
Electric Conductivity , Liquid Crystals/chemistry , Semiconductors
5.
Inorg Chem ; 59(15): 10482-10491, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32649199

ABSTRACT

This paper reports the synthesis, liquid-crystal behavior, and charge-transport properties in the mesophase of triphenylene Schiff bases and their copper(II), nickel(II), and oxovanadium(IV) complexes. The thermal and electronic properties of the Schiff bases are modulated by coordination to the corresponding metal moieties, which have the ability to self-assemble into linear structures and help the alignment of the triphenylene columns. This produces two kinds of electronically nonconnected columnar regions, one purely organic and one more inorganic. The most remarkable effect is a striking charge mobility enhancement in the metal-containing mesophases, due to the contribution of the more inorganic columns: in comparison to values of hole mobility along the columnar stacking for the purely organic columnar mesophases, on the order of 10-7 cm2 V-1 s-1, these values jump to 1-10 cm2 V-1 s-1 in these hybrid inorganic/organic columnar materials.

6.
Chemistry ; 24(66): 17459-17463, 2018 Nov 27.
Article in English | MEDLINE | ID: mdl-30238538

ABSTRACT

Computational and experimental studies unravel the structural and electronic properties of a novel supramolecular liquid crystal built through a hierarchical assembly process resulting in an H-bonded melamine rosette decorated with peripheral triphenylenes. The six-fold symmetry of the mesogen facilitates the formation of a highly organized hexagonal columnar mesophase stable at room temperature. X-ray diffraction and electron density maps confirm additional intra- and intercolumn segregation of functional subunits, and this paves the way for 1D charge transport. Indeed, hole mobility has been measured and found to be higher than for related mesogens. DFT calculations of HOMO and LUMO levels and parameters such as reorganization energy and transfer integral of the rosette structure have been achieved, and not only validate the columnar organization but also establish the way it translates into a favorable electronic architecture and molecular orbital interactions to promote charge carrier mobility.

7.
Chemistry ; 24(14): 3576-3583, 2018 Mar 07.
Article in English | MEDLINE | ID: mdl-29271517

ABSTRACT

The synthesis, self-assembly, and semiconducting properties of a series of disk-like truxenone derivatives, functionalized with three peripheral long alkyl chains, either directly attached or distanced by linking phenyl or ethynyl groups, are reported. The strategy of distancing the alkyl chains from the central aromatic cores induces in these discotics well-ordered columnar assemblies and has a favorable effect on their charge-carrier mobility. Electron mobility values above 1 cm2 V-1 S-1 were determined for a truxenone functionalized with three peripheral decynyl chains by means of the space charge-limited current technique. DFT calculations help to rationalize the high mobility values found for these new truxenone-based systems, indicating efficient intermolecular electronic couplings (fostered by a favorable stacking configuration) and moderate intramolecular reorganization energies for electrons in the origin of such high mobilities.

8.
ACS Macro Lett ; 7(9): 1138-1143, 2018 Sep 18.
Article in English | MEDLINE | ID: mdl-35632945

ABSTRACT

Highly conductive coaxial supramolecular wires are prepared by using a new family of Janus dendrimers that combines two rigid aromatic parts and two flexible aliphatic parts. The two external regions consist of a promesogenic block based on a third generation Percec-type dendron with four terminal dodecyloxy alkyl chains, whereas the two internal regions are formed by one, two, or three carbazole units bearing flexible spacers. These functional Janus dendrimers self-organize in columnar liquid crystal phases with a strong coaxial segregation within each column. Interestingly, the charge mobility studies revealed that these Janus dendrimers display semiconductor properties with hole mobility values up to 0.5 cm2 V-1 s-1, depending on the packing within the columns which can be tuned by the number of carbazole functional units. The high hole mobility values measured in these materials are among the highest values reported for columnar liquid crystals.

9.
Angew Chem Int Ed Engl ; 56(5): 1259-1263, 2017 01 24.
Article in English | MEDLINE | ID: mdl-28029203

ABSTRACT

We report a new family of multifunctional liquid-crystalline porphyrin-core dendrimers that have coumarin functional groups around the porphyrin core. Porphyrin metalation strongly affects the photophysical properties, and therefore ZnII and CuII derivatives have also been prepared. All the synthesized dendrimers form a nematic discotic mesophase. Their high tendency for homeotropic alignment makes these dendrimers excellent candidates for device applications, owing to their easy processability, spontaneous alignment between electrodes, and self-healing of defects because of their dynamic nature. The charge mobility values of these materials are the highest ever reported for a nematic discotic phase. Moreover, these values are similar to the highest values reported for ordered columnar mesophases, and this shows that a supramolecular organization in columns is not necessary to achieve high charge mobility.

10.
ACS Appl Mater Interfaces ; 8(40): 26964-26971, 2016 Oct 12.
Article in English | MEDLINE | ID: mdl-27643623

ABSTRACT

The p-type semiconducting properties of a triphenylene-fused triindole mesogen, have been studied by applying two complementary methods which have different alignment requirements. The attachment of only three flexible alkyl chains to the nitrogen atoms of this π-extended core is sufficient to induce columnar mesomorphism. High hole mobility values (0.65 cm2 V-1 s-1) have been estimated by space-charge limited current (SCLC) measurements in a diode-like structure which are easily prepared from the melt, rendering this material a good candidate for OPVs and OLEDs devices. The mobility predicted theoretically via a hole-hopping mechanism is in very good agreement with the experimental values determined at the SCLC regime. On the other hand the hole mobility determined on solution processed thin film transistors (OFETs) is significantly lower, which can be rationalized by the high tendency of these large molecules to align on surfaces with their extended π-conjugated core parallel to the substrate as demonstrated by SERS. Despite the differences obtained with the two methods, the acceptable performance found on OFETs fabricated by simple drop-casting processing of such an enlarged aromatic core is remarkable and suggests facile hopping between neighboring molecular columns owing to the large conducting/isolating ratio found in this discotic compound.

11.
J Am Chem Soc ; 138(38): 12511-8, 2016 09 28.
Article in English | MEDLINE | ID: mdl-27577722

ABSTRACT

A novel approach to ambipolar semiconductors based on hydrogen-bonded complexes between a star-shaped tris(triazolyl)triazine and triphenylene-containing benzoic acids is described. The formation of 1:3 supramolecular complexes was evidenced by different techniques. Mesogenic driving forces played a decisive role in the formation of the hydrogen-bonded complexes in the bulk. All of the complexes formed by nonmesogenic components gave rise to hexagonal columnar (Colh) liquid crystal phases, which are stable at room temperature. In all cases, X-ray diffraction experiments supported by electron density distribution maps confirmed triphenylene/tris(triazolyl)triazine segregation into hexagonal sublattices and lattices, respectively, as well as remarkable intracolumnar order. These highly ordered nanostructures, obtained by the combined supramolecular H-bond/columnar liquid crystal approach, yielded donor/acceptor coaxial organization that is promising for the formation of ambipolar organic semiconductors with high mobilities, as indicated by charge transport measurements.

12.
ACS Appl Mater Interfaces ; 7(7): 4019-28, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25615009

ABSTRACT

The complete characterization of novel electropolymerizable organometallic complexes is presented. These are newly synthesized cyclometalated complexes of general formula (PPy)M(O ∧ N)(n) (H(PPy) = 2-phenylpyridine, M = Pd(II) or Pt(II), H(O ∧ N)(n) = Schiff base). Polymeric thin films have been obtained from these complexes by electropolymerization of the triphenylamino group grafted onto the H(O ∧ N)(n) ancillary ligand. The redox behavior and the photoconductivity of both of the monomers (PPy)M(O ∧ N)(n) and the electropolymerized species have been investigated. The polymeric films of (PPy)M(O ∧ N)(n) have shown a very significant enhancement of photoconductivity when compared to their monomeric amorphous counterparts. The high stability of the obtained films strongly suggests that electropolymerization of cyclometalated complexes represents a viable deposition technique of quality thin films with improved photoconduction properties, hence opening the door to a new class of materials with suitable properties for optoelectronic applications.

13.
Chemistry ; 21(3): 1359-69, 2015 Jan 12.
Article in English | MEDLINE | ID: mdl-25404154

ABSTRACT

The synthesis and characterisation of a family of block codendrimers consisting of highly versatile mesogenic and carbazole-containing 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) dendrons are reported. The liquid-crystal behaviour was investigated by means of differential scanning calorimetry, polarised-light optical microscopy and X-ray diffraction. Depending on the chemical structure of the constituent dendrons, the codendrimers show lamellar or columnar mesophases. On the basis of the experimental results, models both at the molecular level and in the mesophase are proposed. The physical properties of the block codendrimers derived from the presence of the carbazole moiety in their structure were investigated: photoluminescence in solution and in the mesophase, electrochemical behaviour and hole transport. Electrodeposition of carbazole dendrons afforded a globular supramolecular conformation in which the mesogenic molecular side plays a key role.

14.
Chemistry ; 20(32): 10027-37, 2014 Aug 04.
Article in English | MEDLINE | ID: mdl-24938877

ABSTRACT

Novel liquid crystal (LC) dendrimers have been synthesised by hydrogen bonding between an s-triazine as the central core and three peripheral dendrons derived from bis(hydroxymethyl)propionic acid. Symmetric acid dendrons bearing achiral promesogenic units have been synthesised to obtain 3:1 complexes with triazine that exhibit LC properties. Asymmetric dendrons that combine the achiral promesogenic unit and an active moiety derived from coumarin or pyrene structures have been synthesised in order to obtain dendrimers with photophysical and electrochemical properties. The formation of the complexes was confirmed by IR and NMR spectroscopy data. The liquid crystalline properties were investigated by differential scanning calorimetry, polarising optical microscopy and X-ray diffractometry. All complexes displayed mesogenic properties, which were smectic in the case of symmetric dendrons and their complexes and nematic in the case of asymmetric dendrons and their dendrimers. A supramolecular model for the lamellar mesophase, based mainly on X-ray diffraction studies, is proposed. The electrochemical behaviour of dendritic complexes was investigated by cyclic voltammetry. The UV/Vis absorption and emission properties of the compounds and the photoconductive properties of the dendrons and dendrimers were also investigated.

16.
Chem Asian J ; 4(7): 1141-6, 2009 Jul 06.
Article in English | MEDLINE | ID: mdl-19434642

ABSTRACT

The incorporation of a rigid core, formed by a cyclopalladated azobenzene fragment bonded to an ancillary Schiff base ligand, into molecules with 12 or 11 peripheral alkyl chains has been successfully achieved. These new complexes, 1 and 2, respectively, are columnar liquid crystals between room temperature and about 50 degrees C. Both cyclometallated and ancillary ligands have been polyalkylated through either aryl ester (electron-withdrawing group) or aryl ether (electron-releasing group) linkages, in order to tune the HOMO/LUMO energy levels. The photoconductive properties of 1 and 2 have been studied as a function of their absorption properties before and after annealing, from the UV/Vis to NIR region. Compared with the reference compounds, tris-alkynyl benzene discotics, these new materials gave similar performances (sigma/I approximately 8x10(-13) S cm W(-1) with E = 10 V microm(-1) at lambda = 370 nm). Moreover, complex 2 shows a normalized photoconductivity sigma/I = 8.5x10(-13) S cm W(-1) at lambda = 760 nm. Organic photoconductors in such a high wavelength spectral range are not common and are usually assembled by mixing dyes with organic semiconductors.

SELECTION OF CITATIONS
SEARCH DETAIL
...