Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
Water Sci Technol ; 69(1): 38-47, 2014.
Article in English | MEDLINE | ID: mdl-24434966

ABSTRACT

The aim of this study was to evaluate the performance of two pilot horizontal flow constructed wetlands (HFCWs) with and without vegetation. Three types of plants namely Canna, Phragmites australis and Cyprus papyrus were used. The surface area of each plant was 654 m(2). The flow rate was 20 m(3) d(-1) and the organic loading rate range was 1.7-3.4 kg BOD d(-1) with a detention time of 11 days. The results obtained showed that planted HFCW produced high quality effluent in terms of reduction of chemical oxygen demand (COD; 88%), biochemical oxygen demand (BOD; 91%) and total suspended solids (TSS; 92%) as well as nutrient removal. In addition, 4 logs of total coliform were removed from the planted unit compared with only 3 logs in the unplanted one. The phosphate uptake by the plants reached 29, 30.91 and 38.9 g P m(-2) for Canna, Phragmites and Cyprus, respectively, with 60% removal rate in the treated effluent. The nitrogen uptake by the same plants reached 63.1, 49.46 and 82.33 g N m(-2). Although, the unplanted unit proved to be efficient in the removal of COD, BOD and TSS, it lacks efficiency in pathogen and nutrient removal. The reclaimed wastewater, after disinfection, could be reused for non-restricted irrigation purposes.


Subject(s)
Waste Disposal, Fluid/methods , Wetlands , Biological Oxygen Demand Analysis , Egypt
2.
J Nanosci Nanotechnol ; 7(6): 1721-5, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17654929

ABSTRACT

Surface compositional maps of self-organized InAs/GaAs quantum dots were obtained with laterally resolved photoemission spectroscopy. We found a surface In concentration of about 0.85 at the center of the islands which decreases to 0.75 on the wetting layer. Comparison with concentration values found in the core of similar dots suggests a strong In segregation on the topmost surface layers of the dots and on the surrounding wetting layer. Furthermore, the morphological properties of the dots such as size and density have been measured with plan-view transmission electron microscopy and low energy electron microscopy.


Subject(s)
Arsenicals/chemistry , Crystallization/methods , Indium/chemistry , Nanotechnology/methods , Quantum Dots , Gallium , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...