Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Polym Mater ; 4(12): 8740-8749, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36532888

ABSTRACT

Molecularly imprinted polymers (MIPs) display intriguing recognition properties and can be used as sensor recognition elements or in separation. In this work, we investigated the formation of hierarchical porosity of compositionally varied MIPs using 129Xe Nuclear Magnetic Resonance (NMR) and 1H Time Domain Nuclear Magnetic Resonance (TD-NMR). Variable temperature 129Xe NMR established the morphological variation with respect to the degree of cross-linking, supported by 1H TD-NMR determination of polymer chain mobility. Together, the results indicate that a high degree of cross-linking stabilizes the porous structure: highly cross-linked samples display a significant amount of accessible mesopores that instead collapse in less structured polymers. No significant differences can be detected due to the presence of templated pores in molecularly imprinted polymers: in the dry state, these specific shapes are too small to accommodate xenon atoms, which, instead, probe higher levels in the porous structure, allowing their study in detail. Additional resonances at a high chemical shift are detected in the 129Xe NMR spectra. Even though their chemical shifts are compatible with xenon dissolved in bulk polymers, variable temperature experiments rule out this possibility. The combination of 129Xe and TD-NMR data allows attribution of these resonances to softer superficial regions probed by xenon in the NMR time scale. This can contribute to the understanding of the surface dynamics of polymers.

2.
Polymers (Basel) ; 13(17)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34502881

ABSTRACT

Recent years have witnessed a dramatic increase in the use of theoretical and computational approaches in the study and development of molecular imprinting systems. These tools are being used to either improve understanding of the mechanisms underlying the function of molecular imprinting systems or for the design of new systems. Here, we present an overview of the literature describing the application of theoretical and computational techniques to the different stages of the molecular imprinting process (pre-polymerization mixture, polymerization process and ligand-molecularly imprinted polymer rebinding), along with an analysis of trends within and the current status of this aspect of the molecular imprinting field.

3.
Adv Biochem Eng Biotechnol ; 150: 25-50, 2015.
Article in English | MEDLINE | ID: mdl-25786710

ABSTRACT

The development of in silico strategies for the study of the molecular imprinting process and the properties of molecularly imprinted materials has been driven by a growing awareness of the inherent complexity of these systems and even by an increased awareness of the potential of these materials for use in a range of application areas. Here we highlight the development of theoretical and computational strategies that are contributing to an improved understanding of the mechanisms underlying molecularly imprinted material synthesis and performance, and even their rational design.


Subject(s)
Computer Simulation , Models, Chemical , Molecular Imprinting/methods , Polymers/chemistry , Polymers/chemical synthesis
4.
Int J Mol Sci ; 15(11): 20572-84, 2014 Nov 10.
Article in English | MEDLINE | ID: mdl-25391043

ABSTRACT

In this report, principal component analysis (PCA) has been used to explore the influence of template complexation in the pre-polymerization phase on template molecularly imprinted polymer (MIP) recognition and polymer morphology. A series of 16 bupivacaine MIPs were studied. The ethylene glycol dimethacrylate (EGDMA)-crosslinked polymers had either methacrylic acid (MAA) or methyl methacrylate (MMA) as the functional monomer, and the stoichiometry between template, functional monomer and crosslinker was varied. The polymers were characterized using radioligand equilibrium binding experiments, gas sorption measurements, swelling studies and data extracted from molecular dynamics (MD) simulations of all-component pre-polymerization mixtures. The molar fraction of the functional monomer in the MAA-polymers contributed to describing both the binding, surface area and pore volume. Interestingly, weak positive correlations between the swelling behavior and the rebinding characteristics of the MAA-MIPs were exposed. Polymers prepared with MMA as a functional monomer and a polymer prepared with only EGDMA were found to share the same characteristics, such as poor rebinding capacities, as well as similar surface area and pore volume, independent of the molar fraction MMA used in synthesis. The use of PCA for interpreting relationships between MD-derived descriptions of events in the pre-polymerization mixture, recognition properties and morphologies of the corresponding polymers illustrates the potential of PCA as a tool for better understanding these complex materials and for their rational design.


Subject(s)
Methacrylates/chemistry , Molecular Imprinting/methods , Polymerization , Principal Component Analysis
5.
Anal Bioanal Chem ; 400(6): 1771-86, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21475943

ABSTRACT

In principle, molecularly imprinted polymer science and technology provides a means for ready access to nano-structured polymeric materials of predetermined selectivity. The versatility of the technique has brought it to the attention of many working with the development of nanomaterials with biological or biomimetic properties for use as therapeutics or in medical devices. Nonetheless, the further evolution of the field necessitates the development of robust predictive tools capable of handling the complexity of molecular imprinting systems. The rapid growth in computer power and software over the past decade has opened new possibilities for simulating aspects of the complex molecular imprinting process. We present here a survey of the current status of the use of in silico-based approaches to aspects of molecular imprinting. Finally, we highlight areas where ongoing and future efforts should yield information critical to our understanding of the underlying mechanisms sufficient to permit the rational design of molecularly imprinted polymers.


Subject(s)
Biocompatible Materials/chemical synthesis , Molecular Dynamics Simulation , Molecular Imprinting/methods , Nanostructures/chemistry , Polymers/chemical synthesis , Quantum Theory , Animals , Biocompatible Materials/chemistry , Humans , Polymers/chemistry
6.
Biosens Bioelectron ; 25(3): 553-7, 2009 Nov 15.
Article in English | MEDLINE | ID: mdl-19646857

ABSTRACT

The influence of the physical properties of incubation medium on the rebinding of template to bupivacaine molecularly imprinted and non-imprinted methacrylic acid-ethylene dimethacrylate co-polymers has been studied. Principal component analysis (PCA) was employed to identify the factors with the greatest influence on binding. While the dielectric constant (D) made a significant contribution to describing the observed binding, the influence of polarity as reflected in the Snyder polarity index (SPI) was also demonstrated to make a significant contribution. The use of solvents containing hydroxyl functionality in particular was observed to exert unique effects on recognition. The variation in solvent influence on binding at constant D motivates more complex analyses when studying MIP-ligand recognition.


Subject(s)
Molecular Imprinting , Biosensing Techniques , Bupivacaine/chemistry , Ligands , Polymers/chemistry , Polymethacrylic Acids/chemistry , Principal Component Analysis , Solvents
7.
J Biol Chem ; 284(34): 22926-37, 2009 Aug 21.
Article in English | MEDLINE | ID: mdl-19520847

ABSTRACT

Amrinone is a bipyridine compound with characteristic effects on the force-velocity relationship of fast skeletal muscle, including a reduction in the maximum shortening velocity and increased maximum isometric force. Here we performed experiments to elucidate the molecular mechanisms for these effects, with the additional aim to gain insight into the molecular mechanisms underlying the force-velocity relationship. In vitro motility assays established that amrinone reduces the sliding velocity of heavy meromyosin-propelled actin filaments by 30% at different ionic strengths of the assay solution. Stopped-flow studies of myofibrils, heavy meromyosin and myosin subfragment 1, showed that the effects on sliding speed were not because of a reduced rate of ATP-induced actomyosin dissociation because the rate of this process was increased by amrinone. Moreover, optical tweezers studies could not detect any amrinone-induced changes in the working stroke length. In contrast, the ADP affinity of acto-heavy meromyosin was increased about 2-fold by 1 mm amrinone. Similar effects were not observed for acto-subfragment 1. Together with the other findings, this suggests that the amrinone-induced reduction in sliding velocity is attributed to inhibition of a strain-dependent ADP release step. Modeling results show that such an effect may account for the amrinone-induced changes of the force-velocity relationship. The data emphasize the importance of the rate of a strain-dependent ADP release step in influencing the maximum sliding velocity in fast skeletal muscle. The data also lead us to discuss the possible importance of cooperative interactions between the two myosin heads in muscle contraction.


Subject(s)
Actomyosin/metabolism , Adenosine Diphosphate/metabolism , Amrinone/pharmacology , Calcium Channel Blockers/pharmacology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Amrinone/chemistry , Animals , Calcium Channel Blockers/chemistry , In Vitro Techniques , Kinetics , Models, Biological , Molecular Structure , Muscle Contraction/drug effects , Myofibrils/drug effects , Myofibrils/metabolism , Myosin Subfragments/metabolism , Protein Binding/drug effects , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...