Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Nucl Med Mol Imaging ; 48(3): 747-756, 2021 03.
Article in English | MEDLINE | ID: mdl-32888039

ABSTRACT

PURPOSE: To determine thresholds for amyloid beta pathology and evaluate associations with longitudinal memory performance with the aim to identify a grey zone of early amyloid beta accumulation and investigate its clinical relevance. METHODS: We included 162 cognitively normal participants with subjective cognitive decline from the SCIENCe cohort (64 ± 8 years, 38% F, MMSE 29 ± 1). Each underwent a dynamic [18F] florbetapir PET scan, a T1-weighted MRI scan and longitudinal memory assessments (RAVLT delayed recall, n = 655 examinations). PET scans were visually assessed as amyloid positive/negative. Additionally, we calculated the mean binding potential (BPND) and standardized uptake value ratio (SUVr50-70) for an a priori defined composite region of interest. We determined six amyloid positivity thresholds using various data-driven methods (resulting thresholds: BPND 0.19/0.23/0.29; SUVr 1.28/1.34/1.43). We used Cohen's kappa to analyse concordance between thresholds and visual assessment. Next, we used quantiles to divide the sample into two to five subgroups of equal numbers (median, tertiles, quartiles, quintiles), and operationalized a grey zone as the range between the thresholds (0.19-0.29 BPND/1.28-1.43 SUVr). We used linear mixed models to determine associations between thresholds and memory slope. RESULTS: As determined by visual assessment, 24% of 162 individuals were amyloid positive. Concordance with visual assessment was comparable but slightly higher for BPND thresholds (range kappa 0.65-0.70 versus 0.60-0.63). All thresholds predicted memory decline (range beta - 0.29 to - 0.21, all p < 0.05). Analyses in subgroups showed memory slopes gradually became steeper with higher amyloid load (all p for trend < 0.05). Participants with a low amyloid burden benefited from a practice effect (i.e. increase in memory), whilst high amyloid burden was associated with memory decline. Memory slopes of individuals in the grey zone were intermediate. CONCLUSION: We provide evidence that not only high but also grey zone amyloid burden subtly impacts memory function. Therefore, in case a binary classification is required, we suggest using a relatively low threshold which includes grey zone amyloid pathology.


Subject(s)
Alzheimer Disease , Amyloid , Cognitive Dysfunction , Aged , Amyloid beta-Peptides , Aniline Compounds , Female , Humans , Male , Middle Aged , Positron-Emission Tomography
2.
EJNMMI Res ; 9(1): 12, 2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30715647

ABSTRACT

BACKGROUND: Partial-volume effects generally result in an underestimation of tumor tracer uptake on PET-CT for small lesions, necessitating partial-volume correction (PVC) for accurate quantification. However, investigation of PVC in dynamic oncological PET studies to date is scarce. The aim of this study was to investigate PVC's impact on tumor kinetic parameter estimation from dynamic PET-CT acquisitions and subsequent validation of simplified semi-quantitative metrics. Ten patients with EGFR-mutated non-small cell lung cancer underwent dynamic 18F-fluorothymidine PET-CT before, 7 days after, and 28 days after commencing treatment with a tyrosine kinase inhibitor. Parametric PVC was applied using iterative deconvolution without and with highly constrained backprojection (HYPR) denoising, respectively. Using an image-derived input function with venous parent plasma calibration, we estimated full kinetic parameters VT, K1, and k3/k4 (BPND) using a reversible two-tissue compartment model, and simplified metrics (SUV and tumor-to-blood ratio) at 50-60 min post-injection. RESULTS: PVC had a non-linear effect on measured activity concentrations per timeframe. PVC significantly changed each kinetic parameter, with a median increase in VT of 11.8% (up to 25.1%) and 10.8% (up to 21.7%) without and with HYPR, respectively. Relative changes in kinetic parameter estimates vs. simplified metrics after applying PVC were poorly correlated (correlations 0.36-0.62; p < 0.01). PVC increased correlations between simplified metrics and VT from 0.82 and 0.81 (p < 0.01) to 0.90 and 0.88 (p < 0.01) for SUV and TBR, respectively, albeit non-significantly. PVC also increased correlations between treatment-induced changes in simplified metrics vs. VT at 7 (SUV) and 28 (SUV and TBR) days after treatment start non-significantly. Delineation on partial-volume corrected PET images resulted in a median decrease in metabolic tumor volume of 14.3% (IQR - 22.1 to - 7.5%), and increased the effect of PVC on kinetic parameter estimates. CONCLUSION: PVC has a significant impact on tumor kinetic parameter estimation from dynamic PET-CT data, which differs from its effect on simplified metrics. However, it affected validation of these simplified metrics both as single measurements and as biomarkers of treatment response only to a small extent. Future dynamic PET studies should preferably incorporate PVC. TRIAL REGISTRATION: Dutch Trial Register, NTR3557 .

SELECTION OF CITATIONS
SEARCH DETAIL
...