Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 167
Filter
1.
Sci Data ; 11(1): 721, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956063

ABSTRACT

Patients with congenital heart disease often have cardiac anatomy that deviates significantly from normal, frequently requiring multiple heart surgeries. Image segmentation from a preoperative cardiovascular magnetic resonance (CMR) scan would enable creation of patient-specific 3D surface models of the heart, which have potential to improve surgical planning, enable surgical simulation, and allow automatic computation of quantitative metrics of heart function. However, there is no publicly available CMR dataset for whole-heart segmentation in patients with congenital heart disease. Here, we release the HVSMR-2.0 dataset, comprising 60 CMR scans alongside manual segmentation masks of the 4 cardiac chambers and 4 great vessels. The images showcase a wide range of heart defects and prior surgical interventions. The dataset also includes masks of required and optional extents of the great vessels, enabling fairer comparisons across algorithms. Detailed diagnoses for each subject are also provided. By releasing HVSMR-2.0, we aim to encourage development of robust segmentation algorithms and clinically relevant tools for congenital heart disease.


Subject(s)
Heart Defects, Congenital , Heart , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Humans , Heart Defects, Congenital/diagnostic imaging , Heart/diagnostic imaging , Algorithms
2.
IEEE Trans Med Imaging ; PP2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38857148

ABSTRACT

Rigid motion tracking is paramount in many medical imaging applications where movements need to be detected, corrected, or accounted for. Modern strategies rely on convolutional neural networks (CNN) and pose this problem as rigid registration. Yet, CNNs do not exploit natural symmetries in this task, as they are equivariant to translations (their outputs shift with their inputs) but not to rotations. Here we propose EquiTrack, the first method that uses recent steerable SE(3)-equivariant CNNs (E-CNN) for motion tracking. While steerable E-CNNs can extract corresponding features across different poses, testing them on noisy medical images reveals that they do not have enough learning capacity to learn noise invariance. Thus, we introduce a hybrid architecture that pairs a denoiser with an E-CNN to decouple the processing of anatomically irrelevant intensity features from the extraction of equivariant spatial features. Rigid transforms are then estimated in closed-form. EquiTrack outperforms state-of-the-art learning and optimisation methods for motion tracking in adult brain MRI and fetal MRI time series. Our code is available at https://github.com/BBillot/EquiTrack.

3.
Biomed Opt Express ; 15(3): 1719-1738, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38495711

ABSTRACT

Intravascular ultrasound and optical coherence tomography are widely available for assessing coronary stenoses and provide critical information to optimize percutaneous coronary intervention. Intravascular polarization-sensitive optical coherence tomography (PS-OCT) measures the polarization state of the light scattered by the vessel wall in addition to conventional cross-sectional images of subsurface microstructure. This affords reconstruction of tissue polarization properties and reveals improved contrast between the layers of the vessel wall along with insight into collagen and smooth muscle content. Here, we propose a convolutional neural network model, optimized using two new loss terms (Boundary Cardinality and Attending Physician), that takes advantage of the additional polarization contrast and classifies the lumen, intima, and media layers in addition to guidewire and plaque shadows. Our model segments the media boundaries through fibrotic plaques and continues to estimate the outer media boundary behind shadows of lipid-rich plaques. We demonstrate that our multi-class classification model outperforms existing methods that exclusively use conventional OCT data, predominantly segment the lumen, and consider subsurface layers at most in regions of minimal disease. Segmentation of all anatomical layers throughout diseased vessels may facilitate stent sizing and will enable automated characterization of plaque polarization properties for investigation of the natural history and significance of coronary atheromas.

4.
Front Cardiovasc Med ; 10: 1167500, 2023.
Article in English | MEDLINE | ID: mdl-37904806

ABSTRACT

Introduction: As the life expectancy of children with congenital heart disease (CHD) is rapidly increasing and the adult population with CHD is growing, there is an unmet need to improve clinical workflow and efficiency of analysis. Cardiovascular magnetic resonance (CMR) is a noninvasive imaging modality for monitoring patients with CHD. CMR exam is based on multiple breath-hold 2-dimensional (2D) cine acquisitions that should be precisely prescribed and is expert and institution dependent. Moreover, 2D cine images have relatively thick slices, which does not allow for isotropic delineation of ventricular structures. Thus, development of an isotropic 3D cine acquisition and automatic segmentation method is worthwhile to make CMR workflow straightforward and efficient, as the present work aims to establish. Methods: Ninety-nine patients with many types of CHD were imaged using a non-angulated 3D cine CMR sequence covering the whole-heart and great vessels. Automatic supervised and semi-supervised deep-learning-based methods were developed for whole-heart segmentation of 3D cine images to separately delineate the cardiac structures, including both atria, both ventricles, aorta, pulmonary arteries, and superior and inferior vena cavae. The segmentation results derived from the two methods were compared with the manual segmentation in terms of Dice score, a degree of overlap agreement, and atrial and ventricular volume measurements. Results: The semi-supervised method resulted in a better overlap agreement with the manual segmentation than the supervised method for all 8 structures (Dice score 83.23 ± 16.76% vs. 77.98 ± 19.64%; P-value ≤0.001). The mean difference error in atrial and ventricular volumetric measurements between manual segmentation and semi-supervised method was lower (bias ≤ 5.2 ml) than the supervised method (bias ≤ 10.1 ml). Discussion: The proposed semi-supervised method is capable of cardiac segmentation and chamber volume quantification in a CHD population with wide anatomical variability. It accurately delineates the heart chambers and great vessels and can be used to accurately calculate ventricular and atrial volumes throughout the cardiac cycle. Such a segmentation method can reduce inter- and intra- observer variability and make CMR exams more standardized and efficient.

5.
Article in English | MEDLINE | ID: mdl-37505997

ABSTRACT

Learning-based image reconstruction models, such as those based on the U-Net, require a large set of labeled images if good generalization is to be guaranteed. In some imaging domains, however, labeled data with pixel- or voxel-level label accuracy are scarce due to the cost of acquiring them. This problem is exacerbated further in domains like medical imaging, where there is no single ground truth label, resulting in large amounts of repeat variability in the labels. Therefore, training reconstruction networks to generalize better by learning from both labeled and unlabeled examples (called semi-supervised learning) is problem of practical and theoretical interest. However, traditional semi-supervised learning methods for image reconstruction often necessitate handcrafting a differentiable regularizer specific to some given imaging problem, which can be extremely time-consuming. In this work, we propose "supervision by denoising" (SUD), a framework to supervise reconstruction models using their own denoised output as labels. SUD unifies stochastic averaging and spatial denoising techniques under a spatio-temporal denoising framework and alternates denoising and model weight update steps in an optimization framework for semi-supervision. As example applications, we apply SUD to two problems from biomedical imaging-anatomical brain reconstruction (3D) and cortical parcellation (2D)-to demonstrate a significant improvement in reconstruction over supervised-only and ensembling baselines. Our code available at https://github.com/seannz/sud.

6.
IEEE Trans Med Imaging ; 42(11): 3362-3373, 2023 11.
Article in English | MEDLINE | ID: mdl-37285247

ABSTRACT

Image-to-image translation has seen major advances in computer vision but can be difficult to apply to medical images, where imaging artifacts and data scarcity degrade the performance of conditional generative adversarial networks. We develop the spatial-intensity transform (SIT) to improve output image quality while closely matching the target domain. SIT constrains the generator to a smooth spatial transform (diffeomorphism) composed with sparse intensity changes. SIT is a lightweight, modular network component that is effective on various architectures and training schemes. Relative to unconstrained baselines, this technique significantly improves image fidelity, and our models generalize robustly to different scanners. Additionally, SIT provides a disentangled view of anatomical and textural changes for each translation, making it easier to interpret the model's predictions in terms of physiological phenomena. We demonstrate SIT on two tasks: predicting longitudinal brain MRIs in patients with various stages of neurodegeneration, and visualizing changes with age and stroke severity in clinical brain scans of stroke patients. On the first task, our model accurately forecasts brain aging trajectories without supervised training on paired scans. On the second task, it captures associations between ventricle expansion and aging, as well as between white matter hyperintensities and stroke severity. As conditional generative models become increasingly versatile tools for visualization and forecasting, our approach demonstrates a simple and powerful technique for improving robustness, which is critical for translation to clinical settings. Source code is available at github.com/clintonjwang/spatial-intensity-transforms.


Subject(s)
Image Processing, Computer-Assisted , Stroke , Humans , Image Processing, Computer-Assisted/methods , Neuroimaging , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging
7.
ArXiv ; 2023 May 05.
Article in English | MEDLINE | ID: mdl-37205264

ABSTRACT

The human thalamus is a highly connected subcortical grey-matter structure within the brain. It comprises dozens of nuclei with different function and connectivity, which are affected differently by disease. For this reason, there is growing interest in studying the thalamic nuclei in vivo with MRI. Tools are available to segment the thalamus from 1 mm T1 scans, but the contrast of the lateral and internal boundaries is too faint to produce reliable segmentations. Some tools have attempted to incorporate information from diffusion MRI in the segmentation to refine these boundaries, but do not generalise well across diffusion MRI acquisitions. Here we present the first CNN that can segment thalamic nuclei from T1 and diffusion data of any resolution without retraining or fine tuning. Our method builds on a public histological atlas of the thalamic nuclei and silver standard segmentations on high-quality diffusion data obtained with a recent Bayesian adaptive segmentation tool. We combine these with an approximate degradation model for fast domain randomisation during training. Our CNN produces a segmentation at 0.7 mm isotropic resolution, irrespective of the resolution of the input. Moreover, it uses a parsimonious model of the diffusion signal at each voxel (fractional anisotropy and principal eigenvector) that is compatible with virtually any set of directions and b-values, including huge amounts of legacy data. We show results of our proposed method on three heterogeneous datasets acquired on dozens of different scanners. An implementation of the method is publicly available at https://freesurfer.net/fswiki/ThalamicNucleiDTI.

8.
Neuroimage ; 274: 120129, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37088323

ABSTRACT

The human thalamus is a highly connected brain structure, which is key for the control of numerous functions and is involved in several neurological disorders. Recently, neuroimaging studies have increasingly focused on the volume and connectivity of the specific nuclei comprising this structure, rather than looking at the thalamus as a whole. However, accurate identification of cytoarchitectonically designed histological nuclei on standard in vivo structural MRI is hampered by the lack of image contrast that can be used to distinguish nuclei from each other and from surrounding white matter tracts. While diffusion MRI may offer such contrast, it has lower resolution and lacks some boundaries visible in structural imaging. In this work, we present a Bayesian segmentation algorithm for the thalamus. This algorithm combines prior information from a probabilistic atlas with likelihood models for both structural and diffusion MRI, allowing segmentation of 25 thalamic labels per hemisphere informed by both modalities. We present an improved probabilistic atlas, incorporating thalamic nuclei identified from histology and 45 white matter tracts surrounding the thalamus identified in ultra-high gradient strength diffusion imaging. We present a family of likelihood models for diffusion tensor imaging, ensuring compatibility with the vast majority of neuroimaging datasets that include diffusion MRI data. The use of these diffusion likelihood models greatly improves identification of nuclear groups versus segmentation based solely on structural MRI. Dice comparison of 5 manually identifiable groups of nuclei to ground truth segmentations show improvements of up to 10 percentage points. Additionally, our chosen model shows a high degree of reliability, with median test-retest Dice scores above 0.85 for four out of five nuclei groups, whilst also offering improved detection of differential thalamic involvement in Alzheimer's disease (AUROC 81.98%). The probabilistic atlas and segmentation tool will be made publicly available as part of the neuroimaging package FreeSurfer (https://freesurfer.net/fswiki/ThalamicNucleiDTI).


Subject(s)
Diffusion Tensor Imaging , Thalamic Nuclei , Humans , Bayes Theorem , Reproducibility of Results , Thalamic Nuclei/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods
9.
IEEE Trans Med Imaging ; 42(6): 1707-1719, 2023 06.
Article in English | MEDLINE | ID: mdl-37018704

ABSTRACT

Reconstructing 3D MR volumes from multiple motion-corrupted stacks of 2D slices has shown promise in imaging of moving subjects, e. g., fetal MRI. However, existing slice-to-volume reconstruction methods are time-consuming, especially when a high-resolution volume is desired. Moreover, they are still vulnerable to severe subject motion and when image artifacts are present in acquired slices. In this work, we present NeSVoR, a resolution-agnostic slice-to-volume reconstruction method, which models the underlying volume as a continuous function of spatial coordinates with implicit neural representation. To improve robustness to subject motion and other image artifacts, we adopt a continuous and comprehensive slice acquisition model that takes into account rigid inter-slice motion, point spread function, and bias fields. NeSVoR also estimates pixel-wise and slice-wise variances of image noise and enables removal of outliers during reconstruction and visualization of uncertainty. Extensive experiments are performed on both simulated and in vivo data to evaluate the proposed method. Results show that NeSVoR achieves state-of-the-art reconstruction quality while providing two to ten-fold acceleration in reconstruction times over the state-of-the-art algorithms.


Subject(s)
Imaging, Three-Dimensional , Magnetic Resonance Imaging , Humans , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Motion , Fetus , Algorithms , Image Processing, Computer-Assisted/methods , Artifacts
10.
Sci Adv ; 9(5): eadd3607, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36724222

ABSTRACT

Every year, millions of brain magnetic resonance imaging (MRI) scans are acquired in hospitals across the world. These have the potential to revolutionize our understanding of many neurological diseases, but their morphometric analysis has not yet been possible due to their anisotropic resolution. We present an artificial intelligence technique, "SynthSR," that takes clinical brain MRI scans with any MR contrast (T1, T2, etc.), orientation (axial/coronal/sagittal), and resolution and turns them into high-resolution T1 scans that are usable by virtually all existing human neuroimaging tools. We present results on segmentation, registration, and atlasing of >10,000 scans of controls and patients with brain tumors, strokes, and Alzheimer's disease. SynthSR yields morphometric results that are very highly correlated with what one would have obtained with high-resolution T1 scans. SynthSR allows sample sizes that have the potential to overcome the power limitations of prospective research studies and shed new light on the healthy and diseased human brain.


Subject(s)
Artificial Intelligence , Neuroimaging , Humans , Prospective Studies , Neuroimaging/methods , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods
11.
Cereb Cortex ; 33(9): 5613-5624, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36520481

ABSTRACT

Measuring and understanding functional fetal brain development in utero is critical for the study of the developmental foundations of our cognitive abilities, possible early detection of disorders, and their prevention. Thalamocortical connections are an intricate component of shaping the cortical layout, but so far, only ex-vivo studies provide evidence of how axons enter the sub-plate and cortex during this highly dynamic phase. Evidence for normal in-utero development of the functional thalamocortical connectome in humans is missing. Here, we modeled fetal functional thalamocortical connectome development using in-utero functional magnetic resonance imaging in fetuses observed from 19th to 40th weeks of gestation (GW). We observed a peak increase of thalamocortical functional connectivity strength between 29th and 31st GW, right before axons establish synapses in the cortex. The cortico-cortical connectivity increases in a similar time window, and exhibits significant functional laterality in temporal-superior, -medial, and -inferior areas. Homologous regions exhibit overall similar mirrored connectivity profiles, but this similarity decreases during gestation giving way to a more diverse cortical interconnectedness. Our results complement the understanding of structural development of the human connectome and may serve as the basis for the investigation of disease and deviations from a normal developmental trajectory of connectivity development.


Subject(s)
Cerebral Cortex , Connectome , Humans , Thalamus , Magnetic Resonance Imaging/methods , Brain , Fetal Development , Connectome/methods , Neural Pathways
12.
Dev Neurosci ; 45(3): 105-114, 2023.
Article in English | MEDLINE | ID: mdl-36538911

ABSTRACT

Early variations of fetal movements are the hallmark of a healthy developing central nervous system. However, there are no automatic methods to quantify the complex 3D motion of the developing fetus in utero. The aim of this prospective study was to use machine learning (ML) on in utero MRI to perform quantitative kinematic analysis of fetal limb movement, assessing the impact of maternal, placental, and fetal factors. In this cross-sectional, observational study, we used 76 sets of fetal (24-40 gestational weeks [GW]) blood oxygenation level-dependent (BOLD) MRI scans of 52 women (18-45 years old) during typical pregnancies. Pregnant women were scanned for 5-10 min while breathing room air (21% O2) and for 5-10 min while breathing 100% FiO2 in supine and/or lateral position. BOLD acquisition time was 20 min in total with effective temporal resolution approximately 3 s. To quantify upper and lower limb kinematics, we used a 3D convolutional neural network previously trained to track fetal key points (wrists, elbows, shoulders, ankles, knees, hips) on similar BOLD time series. Tracking was visually assessed, errors were manually corrected, and the absolute movement time (AMT) for each joint was calculated. To identify variables that had a significant association with AMT, we constructed a mixed-model ANOVA with interaction terms. Fetuses showed significantly longer duration of limb movements during maternal hyperoxia. We also found a significant centrifugal increase of AMT across limbs and significantly longer AMT of upper extremities <31 GW and longer AMT of lower extremities >35 GW. In conclusion, using ML we successfully quantified complex 3D fetal limb motion in utero and across gestation, showing maternal factors (hyperoxia) and fetal factors (gestational age, joint) that impact movement. Quantification of fetal motion on MRI is a potential new biomarker of fetal health and neuromuscular development.


Subject(s)
Hyperoxia , Placenta , Pregnancy , Female , Humans , Adolescent , Young Adult , Adult , Middle Aged , Prospective Studies , Cross-Sectional Studies , Fetal Movement , Fetus , Magnetic Resonance Imaging/methods , Machine Learning
13.
Article in English | MEDLINE | ID: mdl-36349348

ABSTRACT

We propose neural network layers that explicitly combine frequency and image feature representations and show that they can be used as a versatile building block for reconstruction from frequency space data. Our work is motivated by the challenges arising in MRI acquisition where the signal is a corrupted Fourier transform of the desired image. The proposed joint learning schemes enable both correction of artifacts native to the frequency space and manipulation of image space representations to reconstruct coherent image structures at every layer of the network. This is in contrast to most current deep learning approaches for image reconstruction that treat frequency and image space features separately and often operate exclusively in one of the two spaces. We demonstrate the advantages of joint convolutional learning for a variety of tasks, including motion correction, denoising, reconstruction from undersampled acquisitions, and combined undersampling and motion correction on simulated and real world multicoil MRI data. The joint models produce consistently high quality output images across all tasks and datasets. When integrated into a state of the art unrolled optimization network with physics-inspired data consistency constraints for undersampled reconstruction, the proposed architectures significantly improve the optimization landscape, which yields an order of magnitude reduction of training time. This result suggests that joint representations are particularly well suited for MRI signals in deep learning networks. Our code and pretrained models are publicly available at https://github.com/nalinimsingh/interlacer.

14.
Placenta ; 128: 69-71, 2022 10.
Article in English | MEDLINE | ID: mdl-36087451

ABSTRACT

Maternal-placental perfusion can be temporarily compromised by Braxton Hicks (BH) uterine contractions. Although prior studies have employed T2* changes to investigate the effect of BH contractions on placental oxygen, the effect of these contractions on the fetus has not been fully characterized. We investigated the effect of BH contractions on quantitative fetal organ T2* across gestation together with the birth information. We observed a slight but significant decrease in fetal brain and liver T2* during contractions.


Subject(s)
Placenta , Uterine Contraction , Female , Fetus , Humans , Oxygen , Pregnancy , Uterus
15.
Med Image Anal ; 80: 102469, 2022 08.
Article in English | MEDLINE | ID: mdl-35640385

ABSTRACT

Training deep learning models that segment an image in one step typically requires a large collection of manually annotated images that captures the anatomical variability in a cohort. This poses challenges when anatomical variability is extreme but training data is limited, as when segmenting cardiac structures in patients with congenital heart disease (CHD). In this paper, we propose an iterative segmentation model and show that it can be accurately learned from a small dataset. Implemented as a recurrent neural network, the model evolves a segmentation over multiple steps, from a single user click until reaching an automatically determined stopping point. We develop a novel loss function that evaluates the entire sequence of output segmentations, and use it to learn model parameters. Segmentations evolve predictably according to growth dynamics encapsulated by training data, which consists of images, partially completed segmentations, and the recommended next step. The user can easily refine the final segmentation by examining those that are earlier or later in the output sequence. Using a dataset of 3D cardiac MR scans from patients with a wide range of CHD types, we show that our iterative model offers better generalization to patients with the most severe heart malformations.


Subject(s)
Heart Defects, Congenital , Neural Networks, Computer , Heart/diagnostic imaging , Heart Defects, Congenital/diagnostic imaging , Humans , Image Processing, Computer-Assisted/methods , Thorax
16.
Neuroinformatics ; 20(4): 943-964, 2022 10.
Article in English | MEDLINE | ID: mdl-35347570

ABSTRACT

This report presents an overview of how machine learning is rapidly advancing clinical translational imaging in ways that will aid in the early detection, prediction, and treatment of diseases that threaten brain health. Towards this goal, we aresharing the information presented at a symposium, "Neuroimaging Indicators of Brain Structure and Function - Closing the Gap Between Research and Clinical Application", co-hosted by the McCance Center for Brain Health at Mass General Hospital and the MIT HST Neuroimaging Training Program on February 12, 2021. The symposium focused on the potential for machine learning approaches, applied to increasingly large-scale neuroimaging datasets, to transform healthcare delivery and change the trajectory of brain health by addressing brain care earlier in the lifespan. While not exhaustive, this overview uniquely addresses many of the technical challenges from image formation, to analysis and visualization, to synthesis and incorporation into the clinical workflow. Some of the ethical challenges inherent to this work are also explored, as are some of the regulatory requirements for implementation. We seek to educate, motivate, and inspire graduate students, postdoctoral fellows, and early career investigators to contribute to a future where neuroimaging meaningfully contributes to the maintenance of brain health.


Subject(s)
Machine Learning , Neuroimaging , Humans , Neuroimaging/methods , Brain/diagnostic imaging , Magnetic Resonance Imaging
17.
Article in English | MEDLINE | ID: mdl-37103480

ABSTRACT

Volumetric reconstruction of fetal brains from multiple stacks of MR slices, acquired in the presence of almost unpredictable and often severe subject motion, is a challenging task that is highly sensitive to the initialization of slice-to-volume transformations. We propose a novel slice-to-volume registration method using Transformers trained on synthetically transformed data, which model multiple stacks of MR slices as a sequence. With the attention mechanism, our model automatically detects the relevance between slices and predicts the transformation of one slice using information from other slices. We also estimate the underlying 3D volume to assist slice-to-volume registration and update the volume and transformations alternately to improve accuracy. Results on synthetic data show that our method achieves lower registration error and better reconstruction quality compared with existing state-of-the-art methods. Experiments with real-world MRI data are also performed to demonstrate the ability of the proposed model to improve the quality of 3D reconstruction under severe fetal motion.

18.
IEEE Trans Med Imaging ; 41(4): 925-936, 2022 04.
Article in English | MEDLINE | ID: mdl-34784274

ABSTRACT

We present a volumetric mesh-based algorithm for parameterizing the placenta to a flattened template to enable effective visualization of local anatomy and function. MRI shows potential as a research tool as it provides signals directly related to placental function. However, due to the curved and highly variable in vivo shape of the placenta, interpreting and visualizing these images is difficult. We address interpretation challenges by mapping the placenta so that it resembles the familiar ex vivo shape. We formulate the parameterization as an optimization problem for mapping the placental shape represented by a volumetric mesh to a flattened template. We employ the symmetric Dirichlet energy to control local distortion throughout the volume. Local injectivity in the mapping is enforced by a constrained line search during the gradient descent optimization. We validate our method using a research study of 111 placental shapes extracted from BOLD MRI images. Our mapping achieves sub-voxel accuracy in matching the template while maintaining low distortion throughout the volume. We demonstrate how the resulting flattening of the placenta improves visualization of anatomy and function. Our code is freely available at https://github.com/mabulnaga/placenta-flattening.


Subject(s)
Magnetic Resonance Imaging , Placenta , Algorithms , Female , Humans , Magnetic Resonance Imaging/methods , Pelvis , Placenta/diagnostic imaging , Pregnancy
19.
Magn Reson Med ; 87(4): 1914-1922, 2022 04.
Article in English | MEDLINE | ID: mdl-34888942

ABSTRACT

PURPOSE: Fetal brain Magnetic Resonance Imaging suffers from unpredictable and unconstrained fetal motion that causes severe image artifacts even with half-Fourier single-shot fast spin echo (HASTE) readouts. This work presents the implementation of a closed-loop pipeline that automatically detects and reacquires HASTE images that were degraded by fetal motion without any human interaction. METHODS: A convolutional neural network that performs automatic image quality assessment (IQA) was run on an external GPU-equipped computer that was connected to the internal network of the MRI scanner. The modified HASTE pulse sequence sent each image to the external computer, where the IQA convolutional neural network evaluated it, and then the IQA score was sent back to the sequence. At the end of the HASTE stack, the IQA scores from all the slices were sorted, and only slices with the lowest scores (corresponding to the slices with worst image quality) were reacquired. RESULTS: The closed-loop HASTE acquisition framework was tested on 10 pregnant mothers, for a total of 73 acquisitions of our modified HASTE sequence. The IQA convolutional neural network, which was successfully employed by our modified sequence in real time, achieved an accuracy of 85.2% and area under the receiver operator characteristic of 0.899. CONCLUSION: The proposed acquisition/reconstruction pipeline was shown to successfully identify and automatically reacquire only the motion degraded fetal brain HASTE slices in the prescribed stack. This minimizes the overall time spent on HASTE acquisitions by avoiding the need to repeat the entire stack if only few slices in the stack are motion-degraded.


Subject(s)
Fetus , Magnetic Resonance Imaging , Female , Fetus/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging/methods , Motion , Pregnancy
20.
Front Cardiovasc Med ; 8: 735587, 2021.
Article in English | MEDLINE | ID: mdl-34957233

ABSTRACT

Hypoplastic left heart syndrome (HLHS) is a severe congenital heart defect in which the right ventricle and associated tricuspid valve (TV) alone support the circulation. TV failure is thus associated with heart failure, and the outcome of TV valve repair are currently poor. 3D echocardiography (3DE) can generate high-quality images of the valve, but segmentation is necessary for precise modeling and quantification. There is currently no robust methodology for rapid TV segmentation, limiting the clinical application of these technologies to this challenging population. We utilized a Fully Convolutional Network (FCN) to segment tricuspid valves from transthoracic 3DE. We trained on 133 3DE image-segmentation pairs and validated on 28 images. We then assessed the effect of varying inputs to the FCN using Mean Boundary Distance (MBD) and Dice Similarity Coefficient (DSC). The FCN with the input of an annular curve achieved a median DSC of 0.86 [IQR: 0.81-0.88] and MBD of 0.35 [0.23-0.4] mm for the merged segmentation and an average DSC of 0.77 [0.73-0.81] and MBD of 0.6 [0.44-0.74] mm for individual TV leaflet segmentation. The addition of commissural landmarks improved individual leaflet segmentation accuracy to an MBD of 0.38 [0.3-0.46] mm. FCN-based segmentation of the tricuspid valve from transthoracic 3DE is feasible and accurate. The addition of an annular curve and commissural landmarks improved the quality of the segmentations with MBD and DSC within the range of human inter-user variability. Fast and accurate FCN-based segmentation of the tricuspid valve in HLHS may enable rapid modeling and quantification, which in the future may inform surgical planning. We are now working to deploy this network for public use.

SELECTION OF CITATIONS
SEARCH DETAIL
...