Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 12785, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37550485

ABSTRACT

This work studies high-performance laminate composite materials made of graphite and poly(ether-ether-ketone) (PEEK). The main objective was to enhance graphite's inherent properties by the addition of PEEK to produce materials with improved thermal and mechanical stability for high-performance applications. The composites were fabricated using a hot press method at a temperature below 310 °C. The newly formed materials were then subjected to various tests, including Scanning Electron Microscopy, Thermogravimetric Analysis, mechanical properties tests, nanoindentation tests, and X-Ray Diffraction to assess their structural, thermal, and mechanical properties. Our findings showed a substantial interfacial interaction between PEEK and graphite, indicating successful composite formation. Both three-layered PEEK/graphite/PEEK (PGP) and five-layered PEEK/graphite/PEEK/graphite/PEEK (PG)2P composites exhibited superior thermal stability at high temperatures compared to neat PEEK. Moreover, our mechanical tests demonstrated a 172% increase in ultimate tensile strength of PGP compared to neat graphite. Additionally, nanoindentation tests confirmed an increase in both Young's modulus and hardness of composites. Furthermore, XRD analysis revealed a 35.5% increase in crystallinity in the fabricated composites compared to pristine PEEK. These findings significantly contribute to the field of high-performance composite materials, confirming that the hot pressing of PEEK and graphite sheets results in enhanced thermal and mechanical properties.

2.
Sci Rep ; 12(1): 22439, 2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36575293

ABSTRACT

Dead-core and non-dead-core solutions to the nonlinear diffusion-reaction equation based on the generalized diffusion flux with gradient-dependent diffusivity and the power-law reaction kinetics in catalyst slabs are established. The formation of dead zones where the reactant concentration vanishes is characterized by the critical Thiele modulus that is derived as a function of reaction order and diffusion exponent in the generalized diffusion flux. The effects of reaction order and diffusion exponent on the reactant concentration distribution in the slab and dead-zone length are analyzed. It is particularly demonstrated that by contrast to the model based on the standard Fick's diffusion, dead-core solutions exist in the case of first-order reactions. Also, the relationship between critical Thiele moduli for models based on the generalized and standard Fick's diffusion fluxes is established.

3.
Micromachines (Basel) ; 14(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36677097

ABSTRACT

Particle packing plays an essential role in industry and chemical engineering. In this work, the discrete element method is used to generate the cylindrical particles and densify the binary cylindrical particle mixtures under the poured packing conditions. The influences of the aspect ratio and volume fraction of particles on the packing structure are measured by planar packing fraction. The Voronoi tessellation is used to quantify the porous structure of packing. The cumulative distribution functions of local packing fractions and the probability distributions of the reduced free volume of Voronoi cells are calculated to describe the local packing characteristics of binary mixtures with different volume fractions. As a result, it is observed that particles with larger aspect ratios in the binary mixture tend to orient randomly, and the particles with smaller aspect ratios have a preferentially horizontal orientation. Results also show that the less dense packings are obtained for mixtures with particles of higher aspect ratios and mixtures with a larger fraction of elongated cylindrical particles.

4.
Micromachines (Basel) ; 12(12)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34945346

ABSTRACT

The porous compacts of non-spherical particles are frequently used in energy storage devices and other advanced applications. In the present work, the microstructures of compacts of monodisperse cylindrical particles are investigated. The cylindrical particles with various aspect ratios are generated using superquadrics, and the discrete element method was adopted to simulate the compacts formed under gravity deposition of randomly oriented particles. The Voronoi tessellation is then used to quantify the porous microstructure of compacts. With one exception, the median reduced free volume of Voronoi cells increases, and the median local packing density decreases for compacts composed of cylinders with a high aspect ratio, indicating a loose packing of long cylinders due to their mechanical interlocking during compaction. The obtained data are needed for further optimization of compact porous microstructure to improve the transport properties of compacts of non-spherical particles.

5.
Materials (Basel) ; 13(20)2020 Oct 10.
Article in English | MEDLINE | ID: mdl-33050421

ABSTRACT

Herein, an approach is proposed to analyze the tortuosity of porous electrodes using the radical Voronoi tessellation. For this purpose, a series of particle compacts geometrically similar to the actual porous electrode were generated using discrete element method; the radical Voronoi tessellation was constructed for each compact to characterize the structural properties; the tortuosity of compact porous structure was simulated by applying the Dijkstra's shortest path algorithm on radical Voronoi tessellation. Finally, the relationships were established between the tortuosity and the composition of the ternary particle mixture, and between the tortuosity and the radical Voronoi cell parameters. The following correlations between tortuosity values and radical Voronoi cell parameters were found: larger faces and longer edges of radical Voronoi cell leads to the increased fraction of larger values of tortuosity in the distribution, while smaller faces and shorter edges of radical Voronoi cell contribute to the increased fraction of smaller tortuosity values, being the tortuosity values more uniform with narrower distribution. Thus, the compacts with enhanced diffusion properties are expected to be obtained by packing particle mixtures with high volume fraction of small and medium particles. These results will help to design the well-packed particle compacts having improved diffusion properties for various applications including porous electrodes.

6.
Int J Pharm ; 310(1-2): 146-53, 2006 Mar 09.
Article in English | MEDLINE | ID: mdl-16414218

ABSTRACT

In this paper, dissolution characteristics of primary-particles and compressed tablets were investigated by experiments using a mathematical model. For the primary-particle, it was found that the dissolution rate increased with a decrease in the particle size. Assuming that primary-particles of size distribution were of cylindrical shape and that the dissolution occurs from the total external surface, an extended Nernst-Noyes-Whitney equation fitted to the experimental data well. As the influences of particle size and shape on thickness of a diffusion-boundary film were found to be quite low, the dissolution rate was considered to be affected by the specific surface area dominantly. Furthermore, the same model was applied to a compressed tablet and fitted to the data well. Though the rate constant obtained were not affected by the properties of primary-particles forming the tablet, it was found to increase with the apparent voidage which occupies the inter-particle volume of tablet diluent among less soluble particles. Consequently, an increase in the apparent voidage is presumed to accelerate penetration of water into the internal voids of the tablet. Thus, the dissolution going, the effective surface area inside the tablet is considered to be extended.


Subject(s)
Models, Chemical , Salicylamides/chemistry , Tablets/chemistry , Kinetics , Lactose/chemistry , Particle Size , Solubility , Surface Properties , Water/chemistry
7.
Int J Pharm ; 311(1-2): 89-96, 2006 Mar 27.
Article in English | MEDLINE | ID: mdl-16427749

ABSTRACT

Ethenzamide solids as a representative active pharmaceutical ingredient (API) were batch-ground by means of a fluidized-bed jet-mill which is a relatively new equipment and promising for production in the pharmaceutical field. Thus, the characteristic grinding mechanism was investigated. As a result, the variation of the residual ratio with grinding time after milling was expressed simply by a mathematical model using only the first Kapur function, and it was consistent with experimental data satisfactorily. As the shape of the function was much different from that of inorganic compound and peculiar to API, a cubic function with respect to particle diameter was defined newly and well fitted to the experimental data. The function was also found to be affected by the operating parameters as the grinding gas pressure, the charge weight of raw material and the linear velocity at the grinding nozzle. According to the assessments of the breakage and the selection functions derived from the first Kapur function, it was found that the grinding mechanism of Ethenzamide particles was related with particle attrition mainly.


Subject(s)
Salicylamides/chemistry , Technology, Pharmaceutical , Kinetics , Models, Chemical , Particle Size , Powders , Pressure , Technology, Pharmaceutical/methods
8.
Yakugaku Zasshi ; 125(12): 951-7, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16327240

ABSTRACT

In pharmaceutical industries, most active pharmaceutical ingredients are poorly water soluble, and therefore milling processes are important to obtain fine particles that can be easily dissolved in the body. However, the main purpose of milling is micronization of particles. From the viewpoint of fine particle preparation in the formulation process, milling has not been investigated sufficiently. In this paper, ethenzamide was milled under various operating conditions using a fluidized-bed jet-mill. It was found that not only the particle size but also the particle shape varied with the milling conditions. The relationship between particle shape and milling conditions has been obtained experimentally.


Subject(s)
Pharmaceutical Preparations , Technology, Pharmaceutical/methods , Particle Size , Salicylamides , Solubility , Water
9.
J Pharm Sci ; 94(5): 1004-12, 2005 May.
Article in English | MEDLINE | ID: mdl-15793798

ABSTRACT

Milling is a common procedure to improve bioavailability of many active pharmaceutical ingredients (APIs), which typically have low solubility in water. But such micronization can yield an increase in the cohesiveness of particles. Although particle cohesiveness is desirable for tablet strength in the subsequent formulation process, increased particle cohesiveness can lead to operational difficulties in a milling equipment due to compaction of particles inside. In this article, the impact of milling via a fluidized-bed jet-mill on the cohesive strength and interparticle force was studied using Ethenzamide as a pharmaceutical model compound. As a result, the particle shape was found to affect both the tensile strength of powder bed and the interparticle cohesive force. A powder bed, having relatively high void fraction by direct tensile test, shows a positive correlation between the cohesive force and the particle sphericity, while powders with low void fraction by diametral compression test show a positive correlation between the cohesive force and the angularity of the particle.


Subject(s)
Drug Compounding , Adhesives , Algorithms , Chemistry, Pharmaceutical , Particle Size , Salicylamides/chemistry , Tensile Strength , X-Ray Diffraction
10.
J Control Release ; 92(3): 361-8, 2003 Oct 30.
Article in English | MEDLINE | ID: mdl-14568416

ABSTRACT

An enhanced method was proposed for controlled release of core material using a coating layer of fine permeable particles dispersed in an impermeable wax prepared by dry-based process. A mathematical model was constructed to describe in detail the core material release by diffusion through the connected permeable particles inside the coating layer. The effective diffusivity was simulated by a random walk method taking into account the structure of the coating layer. The released characteristics were measured for the urea core particle coated with the layer of the starch permeable particles dispersed in the paraffin wax. The calculated results were in a good quantitative agreement with experimental data in all range of coating conditions. As a result, the low release rate was proven to be obtained with thicker coating layer of lower volume fraction of permeable particles. Moreover, the application of permeable particles instead of soluble ones [J. Chem. Eng. Jpn. 35 (2002) 40] resulted in significant decrease in release rate.


Subject(s)
Cellulose/analogs & derivatives , Drug Delivery Systems/methods , Models, Theoretical , Urea/pharmacokinetics , Algorithms , Cellulose/chemistry , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/pharmacokinetics , Diffusion , Excipients/chemistry , Microspheres , Paraffin/chemistry , Permeability , Starch/chemistry , Urea/administration & dosage , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...