Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Life (Basel) ; 13(7)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37511953

ABSTRACT

The assessment of boron microdistribution is essential to evaluate the suitability of boron neutron capture therapy (BNCT) in different biological models. In our laboratory, we have reported a methodology to produce cell imprints on polycarbonate through UV-C sensitization. The aim of this work is to extend the technique to tissue samples in order to enhance spatial resolution. As tissue structure largely differs from cultured cells, several aspects must be considered. We studied the influence of the parameters involved in the imprint and nuclear track formation, such as neutron fluence, different NTDs, etching and UV-C exposure times, tissue absorbance, thickness, and staining, among others. Samples from different biological models of interest for BNCT were used, exhibiting homogeneous and heterogeneous histology and boron microdistribution. The optimal conditions will depend on the animal model under study and the resolution requirements. Both the imprint sharpness and the fading effect depend on tissue thickness. While 6 h of UV-C was necessary to yield an imprint in CR-39, only 5 min was enough to observe clear imprints on Lexan. The information related to microdistribution of boron obtained with neutron autoradiography is of great relevance when assessing new boron compounds and administration protocols and also contributes to the study of the radiobiology of BNCT.

2.
Microsc Microanal ; 21(4): 796-804, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26155721

ABSTRACT

The distribution of boron in tissue samples coming from boron neutron capture therapy protocols can be determined through the analysis of its autoradiography image on a nuclear track detector. A more precise knowledge of boron atom location on the microscopic scale can be attained by the observation of nuclear tracks superimposed on the sample image on the detector. A method to produce an "imprint" of cells cultivated on a polycarbonate detector was developed, based on the photodegradation properties of UV-C radiation on this material. Optimal conditions to generate an appropriate monolayer of Mel-J cells incubated with boronophenylalanine were found. The best images of both cells and nuclear tracks were obtained for a neutron fluence of 1013 cm-2, 6 h UV-C (254 nm) exposure, and 4 min etching time with a KOH solution. The imprint morphology was analyzed by both light and scanning electron microscopy. Similar samples, exposed to UV-A (360 nm) revealed no cellular imprinting. Etch pits were present only inside the cell imprints, indicating a preferential boron uptake (about threefold the incubation concentration). Comparative studies of boron absorption in different cell lines and in vitro evaluation of the effect of diverse boron compounds are feasible with this methodology.


Subject(s)
Autoradiography/methods , Cytological Techniques/methods , Optical Imaging/methods , Polycarboxylate Cement/radiation effects , Radiometry/methods , Ultraviolet Rays , Boranes/metabolism , Cell Line, Tumor , Humans , Phenylalanine/analogs & derivatives , Phenylalanine/metabolism
3.
ACS Nano ; 8(7): 6911-21, 2014 Jul 22.
Article in English | MEDLINE | ID: mdl-24897380

ABSTRACT

The increasing complexity of composite materials structured on the nanometer scale requires highly sensitive analytical tools for nanoscale chemical identification, ideally in three dimensions. While infrared near-field microscopy provides high chemical sensitivity and nanoscopic spatial resolution in two dimensions, the quantitative extraction of material properties of three-dimensionally structured samples has not been achieved yet. Here we introduce a method to perform rapid recovery of the thickness and permittivity of simple 3D structures (such as thin films and nanostructures) from near-field measurements, and provide its first experimental demonstration. This is accomplished via a novel nonlinear invertible model of the imaging process, taking advantage of the near-field data recorded at multiple harmonics of the oscillation frequency of the near-field probe. Our work enables quantitative nanoscale-resolved optical studies of thin films, coatings, and functionalization layers, as well as the structural analysis of multiphase materials, among others. It represents a major step toward the further goal of near-field nanotomography.


Subject(s)
Infrared Rays , Nanotechnology/methods , Tomography/methods , Nanostructures/chemistry , Silicon Dioxide/chemistry
4.
Opt Express ; 21(1): 1270-80, 2013 Jan 14.
Article in English | MEDLINE | ID: mdl-23389020

ABSTRACT

We directly visualize and identify the capacitive coupling of infrared dimer antennas in the near field by employing scattering-type scanning near-field optical microscopy (s-SNOM). The coupling is identified by (i) resolving the strongly enhanced nano-localized near fields in the antenna gap and by (ii) tracing the red shift of the dimer resonance when compared to the resonance of the single antenna constituents. Furthermore, by modifying the illumination geometry we break the symmetry, providing a means to excite both the bonding and the "dark" anti-bonding modes. By spectrally matching both modes, their interference yields an enhancement or suppression of the near fields at specific locations, which could be useful in nanoscale coherent control applications.

5.
Adv Mater ; 24(18): 2496-500, 2012 May 08.
Article in English | MEDLINE | ID: mdl-22488954

ABSTRACT

Sketch of the configuration of a light-controlled resistive switching memory. Light enters through the Al(2) O(3) uncovered surface and reaches the optically active p-Si substrate, where carriers are photogenerated and subsequently injected in the Al(2) O(3) layer when a suitable voltage pulse is applied. The resistance of the Al(2) O(3) can be switched between different non-volatile states, depending on the applied voltage pulse and on the illumination conditions.


Subject(s)
Light , Semiconductors , Aluminum Oxide/chemistry , Silicon/chemistry , Silicon Dioxide/chemistry
6.
Nano Lett ; 11(9): 3922-6, 2011 Sep 14.
Article in English | MEDLINE | ID: mdl-21854021

ABSTRACT

An unprecedented control of the spectral response of plasmonic nanoantennas has recently been achieved by designing structures that exhibit Fano resonances. This new insight is paving the way for a variety of applications, such as biochemical sensing and surface-enhanced Raman spectroscopy. Here we use scattering-type near-field optical microscopy to map the spatial field distribution of Fano modes in infrared plasmonic systems. We observe in real space the interference of narrow (dark) and broad (bright) plasmonic resonances, yielding intensity and phase toggling between different portions of the plasmonic metamolecules when either their geometric sizes or the illumination wavelength is varied.


Subject(s)
Biosensing Techniques , Nanotechnology/methods , Spectrum Analysis, Raman/methods , Interferometry/methods , Materials Testing , Microscopy/methods , Optics and Photonics , Scattering, Radiation , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL