Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Chem ; 17(1): 52, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37291669

ABSTRACT

One of the most notable required features of wound healing is the enhancement of angiogenesis, which aids in the acceleration of regeneration. Poor angiogenesis during diabetic wound healing is linked to a shortage of pro-angiogenic or an increase in anti-angiogenic factors. As a result, a potential treatment method is to increase angiogenesis promoters and decrease suppressors. Incorporating microRNAs (miRNAs) and small interfering RNAs (siRNAs), two forms of quite small RNA molecules, is one way to make use of RNA interference. Several different types of antagomirs and siRNAs are now in the works to counteract the negative effects of miRNAs. The purpose of this research is to locate novel antagonists for miRNAs and siRNAs that target multiple genes to promote angiogenesis and wound healing in diabetic ulcers.In this context, we used gene ontology analysis by exploring across several datasets. Following data analysis, it was processed using a systems biology approach. The feasibility of incorporating the proposed siRNAs and miRNA antagomirs into polymeric bioresponsive nanocarriers for wound delivery was further investigated by means of a molecular dynamics (MD) simulation study. Among the three nanocarriers tested (Poly (lactic-co-glycolic acid) (PLGA), Polyethylenimine (PEI), and Chitosan (CTS), MD simulations show that the integration of PLGA/hsa-mir-422a is the most stable (total energy = -1202.62 KJ/mol, Gyration radius = 2.154 nm, and solvent-accessible surface area = 408.416 nm2). With values of -25.437 KJ/mol, 0.047 nm for the Gyration radius, and 204.563 nm2 for the SASA, the integration of the second siRNA/ Chitosan took the last place. The results of the systems biology and MD simulations show that the suggested RNA may be delivered through bioresponsive nanocarriers to speed up wound healing by boosting angiogenesis.

2.
Membranes (Basel) ; 12(11)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36363596

ABSTRACT

Lithium ions play a crucial role in the energy storage industry. Finding suitable lithium-ion-conductive membranes is one of the important issues of energy storage studies. Hence, a perovskite-based membrane, Lithium Lanthanum Titanate (LLTO), was innovatively implemented in the presence and absence of solvents to precisely understand the mechanism of lithium ion separation. The ion-selective membrane's mechanism and the perovskite-based membrane's efficiency were investigated using Molecular Dynamic (MD) simulation. The results specified that the change in the ambient condition, pH, and temperature led to a shift in LLTO pore sizes. Based on the results, pH plays an undeniable role in facilitating lithium ion transmission through the membrane. It is noticeable that the hydrogen bond interaction between the ions and membrane led to an expanding pore size, from (1.07 Å) to (1.18-1.20 Å), successfully enriching lithium from seawater. However, this value in the absence of the solvent would have been 1.1 Å at 50 °C. It was found that increasing the temperature slightly impacted lithium extraction. The charge analysis exhibited that the trapping energies applied by the membrane to the first three ions (Li+, K+, and Na+) were more than the ions' hydration energies. Therefore, Li+, K+, and Na+ were fully dehydrated, whereas Mg2+ was partially dehydrated and could not pass through the membrane. Evaluating the membrane window diameter, and the combined effect of the three key parameters (barrier energy, hydration energy, and binding energy) illustrates that the required energy to transport Li ions through the membrane is higher than that for other monovalent cations.

3.
Nanotechnology ; 33(46)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35921794

ABSTRACT

We report the design and one-pot synthesis of Ag-doped BiVO4embedded in reduced graphene oxide (BiVO4:Ag/rGO) nanocomposites via a hydrothermal processing route. The binary heterojunction photocatalysts exhibited high efficiency for visible light degradation of model dyes and were correspondingly used for the preparation of photocatalytic membranes using polyvinylidene fluoride (PVDF) or polyethylene glycol (PEG)-modified polyimide (PI), respectively. The surface and cross-section images combined with elemental mapping illustrated the effective distribution of the nanocomposites within the polymeric membranes. Photocatalytic degradation efficiencies of 61% and 70% were achieved after 5 h of visible light irradiation using BiVO4:Ag/rGO@PVDF and BiVO4:Ag/rGO@PI (PEG-modified) systems, respectively. The beneficial photocatalytic performance of the BiVO4:Ag/rGO@PI (PEG-modified) membrane is explained by the higher hydrophilicity due to the PEG modification of the PI membrane. This work may provide a rational and effective strategy to fabricate highly efficient photocatalytic nanocomposite membranes with well-contacted interfaces for environmental purification.

SELECTION OF CITATIONS
SEARCH DETAIL
...