Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
New Microbes New Infect ; 45: 100948, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35399198

ABSTRACT

Legionella spp. as a causative agent of Legionnaires' disease (LD) and an opportunistic pathogen creates a public health problem. Isolation and quantification of this bacteria from clinic water sources are essential for hazard appraisal and sickness avoidance. This study aimed at risk assessment and quantitative measurement along with Legionella monitoring in educational hospital water sources in Tehran, Iran. A cross-sectional study was carried out in 1 year. The conventional culture method was used in this study to isolate Legionella from water samples. The polymerase chain reaction (PCR) technique was used to confirm the identity of the isolates and ensure that they were all Legionella. Quantitative PCR (qPCR) was used to determine the count of bacteria, and HeLa cell culture was used to determine the invasion of isolates. A total of 100 water samples were collected and inoculated on GVPC (glycine, vancomycin, polymyxin, and cycloheximide) agar; 12 (12%) and 42 (42%) cases were culture and PCR positive, respectively. Percentage of Legionella presence in PCR-positive samples by the qPCR method in <103 GU/L, in about 103 and lower than 104 GU/L, and in 104 GU/L was 40.47 (17 cases), 4.76% (two cases), and 54.76% (23 cases), respectively. Invasion analysis revealed that five and four isolates had invaded HeLa cells more than twice and equally, respectively, and the others had a lower invasion than the reference strain. The findings revealed that the spread of LD in hospitals was linked to the water system. Given the importance of nosocomial infections in the medical community, establishing a hospital water monitoring system is the most effective way to control these infections, particularly Legionella infections.

SELECTION OF CITATIONS
SEARCH DETAIL
...