Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Biotechnol ; 14(5): 1990-2008, 2021 09.
Article in English | MEDLINE | ID: mdl-34171185

ABSTRACT

Lactiplantibacillus plantarum (formerly Lactobacillus plantarum) is a lactic acid bacteria species found on plants that is essential for many plant food fermentations. In this study, we investigated the intraspecific phenotypic and genetic diversity of 13 L. plantarum strains isolated from different plant foods, including fermented olives and tomatoes, cactus fruit, teff injera, wheat boza and wheat sourdough starter. We found that strains from the same or similar plant food types frequently exhibited similar carbohydrate metabolism and stress tolerance responses. The isolates from acidic, brine-containing ferments (olives and tomatoes) were more resistant to MRS adjusted to pH 3.5 or containing 4% w/v NaCl, than those recovered from grain fermentations. Strains from fermented olives grew robustly on raffinose as the sole carbon source and were better able to grow in the presence of ethanol (8% v/v or sequential exposure of 8% (v/v) and then 12% (v/v) ethanol) than most isolates from other plant types and the reference strain NCIMB8826R. Cell free culture supernatants from the olive-associated strains were also more effective at inhibiting growth of an olive spoilage strain of Saccharomyces cerevisiae. Multi-locus sequence typing and comparative genomics indicated that isolates from the same source tended to be genetically related. However, despite these similarities, other traits were highly variable between strains from the same plant source, including the capacity for biofilm formation and survival at pH 2 or 50°C. Genomic comparisons were unable to resolve strain differences, with the exception of the most phenotypically impaired and robust isolates, highlighting the importance of utilizing phenotypic studies to investigate differences between strains of L. plantarum. The findings show that L. plantarum is adapted for growth on specific plants or plant food types, but that intraspecific variation may be important for ecological fitness and strain coexistence within individual habitats.


Subject(s)
Lactobacillales , Lactobacillus plantarum , Olea , Fermentation , Food Microbiology , Lactobacillus plantarum/genetics , Multilocus Sequence Typing
2.
Microbiologyopen ; 7(1)2018 02.
Article in English | MEDLINE | ID: mdl-28921941

ABSTRACT

Strains of Lactococcus lactis isolated from plant tissues possess adaptations that support their survival and growth in plant-associated microbial habitats. We previously demonstrated that genes coding for a hybrid nonribosomal peptide synthetase/polyketide synthase (NRPS/PKS) system involved in production of an uncharacterized secondary metabolite are specifically induced in L. lactis KF147 during growth on plant tissues. Notably, this NRPS/PKS has only been identified in plant-isolated strains of L. lactis. Here, we show that the L. lactis KF147 NRPS/PKS genes have homologs in certain Streptococcus mutans isolates and the genetic organization of the NRPS/PKS locus is conserved among L. lactis strains. Using an L. lactis KF147 mutant deficient in synthesis of NrpC, a 4'-phosphopantetheinyl transferase, we found that the NRPS/PKS system improves L. lactis during growth under oxidative conditions in Arapidopsis thaliana leaf lysate. The NRPS/PKS system also improves tolerance of L. lactis to reactive oxygen species and specifically H2 O2 and superoxide radicals in culture medium. These findings indicate that this secondary metabolite provides a novel mechanism for reactive oxygen species detoxification not previously known for this species.


Subject(s)
Lactococcus lactis/enzymology , Oxidative Stress , Peptide Synthases/metabolism , Plant Extracts/metabolism , Plant Leaves/chemistry , Polyketide Synthases/metabolism , Stress, Physiological , Conserved Sequence , Hydrogen Peroxide/toxicity , Lactococcus lactis/genetics , Lactococcus lactis/growth & development , Peptide Synthases/genetics , Polyketide Synthases/genetics , Reactive Oxygen Species/toxicity , Sequence Homology , Streptococcus mutans/enzymology , Streptococcus mutans/genetics
3.
Sci Rep ; 6: 24723, 2016 04 22.
Article in English | MEDLINE | ID: mdl-27102350

ABSTRACT

Chronic HIV infection results in impairment of gut-associated lymphoid tissue leading to systemic immune activation. We previously showed that in early SIV-infected rhesus macaques intestinal dysfunction is initiated with the induction of the IL-1ß pathway in the small intestine and reversed by treatment with an exogenous Lactobacillus plantarum strain. Here, we provide evidence that the transcriptomes of L. plantarum and ileal microbiota are not altered shortly after SIV infection. L. plantarum adapts to the small intestine by expressing genes required for tolerating oxidative stress, modifying cell surface composition, and consumption of host glycans. The ileal microbiota of L. plantarum-containing healthy and SIV+ rhesus macaques also transcribed genes for host glycan metabolism as well as for cobalamin biosynthesis. Expression of these pathways by bacteria were proposed but not previously demonstrated in the mammalian small intestine.


Subject(s)
Gastrointestinal Microbiome , Gene Expression Profiling , Ileum/pathology , Lactobacillus plantarum/genetics , Simian Acquired Immunodeficiency Syndrome/pathology , Animals , Ileum/microbiology , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/microbiology
4.
J Bacteriol ; 197(2): 371-81, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25384484

ABSTRACT

Lactic acid bacteria have been isolated from living, harvested, and fermented plant materials; however, the adaptations these bacteria possess for growth on plant tissues are largely unknown. In this study, we investigated plant habitat-specific traits of Lactococcus lactis during growth in an Arabidopsis thaliana leaf tissue lysate (ATL). L. lactis KF147, a strain originally isolated from plants, exhibited a higher growth rate and reached 7.9-fold-greater cell densities during growth in ATL than the dairy-associated strain L. lactis IL1403. Transcriptome profiling (RNA-seq) of KF147 identified 853 induced and 264 repressed genes during growth in ATL compared to that in GM17 laboratory culture medium. Genes induced in ATL included those involved in the arginine deiminase pathway and a total of 140 carbohydrate transport and metabolism genes, many of which are involved in xylose, arabinose, cellobiose, and hemicellulose metabolism. The induction of those genes corresponded with L. lactis KF147 nutrient consumption and production of metabolic end products in ATL as measured by gas chromatography-time of flight mass spectrometry (GC-TOF/MS) untargeted metabolomic profiling. To assess the importance of specific plant-inducible genes for L. lactis growth in ATL, xylose metabolism was targeted for gene knockout mutagenesis. Wild-type L. lactis strain KF147 but not an xylA deletion mutant was able to grow using xylose as the sole carbon source. However, both strains grew to similarly high levels in ATL, indicating redundancy in L. lactis carbohydrate metabolism on plant tissues. These findings show that certain strains of L. lactis are well adapted for growth on plants and possess specific traits relevant for plant-based food, fuel, and feed fermentations.


Subject(s)
Lactococcus lactis/metabolism , Plants/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gas Chromatography-Mass Spectrometry , Lactococcus lactis/genetics
5.
Food Microbiol ; 33(1): 97-106, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23122507

ABSTRACT

This study resulted in the identification of pectinolytic yeasts in directly brined Sicilian-style green olive fermentations and examination of the influence of those yeasts on the microbial composition and quality of fermented olives. Firstly, defective olives processed in Northern California from 2007 to 2008 and characterized by high levels of mesocarp tissue degradation were found to contain distinct yeast and bacterial populations according to DNA sequence-based analyses. Strains of (pectinolytic) Saccharomyces cerevisiae, Pichia manshurica, Pichia kudriavzevii, and Candida boidinii isolated from directly brined olives were then inoculated into laboratory-scale olive fermentations to quantify the effects of individual yeast strains on the olives. The pH, titratable acidity, and numbers of lactic acid bacteria (LAB) and yeasts varied between the fermentations and fermentations inoculated with P. kudriavzevii and C. boidinii promoted the development of LAB populations. Olive tissue structural integrity declined significantly within 30, 74, and 192 days after the inoculation of pectinolytic S. cerevisiae, P. manshurica and C. boidinii, respectively. In comparison, tissue integrity of olives in control fermentations remained intact although pectinolytic yeasts were present. Notably, pectinolytic yeasts were not found in fermentations inoculated with (non-pectinolytic) P. kudriavzevii and olives exposed to a 1:1 ratio of P. kudriavzevii and P. manshurica exhibited no significant tissue defects. This study showed that pectinolytic yeast are important components of directly brined green olive fermentations and damage caused by pectinolytic yeasts might be prevented by other microbial colonists of the olives.


Subject(s)
Olea/microbiology , Yeasts/metabolism , Fermentation , Food Handling , Molecular Sequence Data , Olea/chemistry , Olea/metabolism , Pectins/metabolism , Phylogeny , Yeasts/classification , Yeasts/genetics , Yeasts/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...