Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Magn Reson ; 165(1): 33-48, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14568515

ABSTRACT

A quantitative method for the analysis of EPR spectra from dinuclear Mn(II) complexes is presented. The complex [(Me(3)TACN)(2)Mn(II)(2)(mu-OAc)(3)]BPh(4) (1) (Me(3)TACN=N, N('),N(")-trimethyl-1,4,7-triazacyclononane; OAc=acetate(1-); BPh(4)=tetraphenylborate(1-)) was studied with EPR spectroscopy at X- and Q-band frequencies, for both perpendicular and parallel polarizations of the microwave field, and with variable temperature (2-50K). Complex 1 is an antiferromagnetically coupled dimer which shows signals from all excited spin manifolds, S=1 to 5. The spectra were simulated with diagonalization of the full spin Hamiltonian which includes the Zeeman and zero-field splittings of the individual manganese sites within the dimer, the exchange and dipolar coupling between the two manganese sites of the dimer, and the nuclear hyperfine coupling for each manganese ion. All possible transitions for all spin manifolds were simulated, with the intensities determined from the calculated probability of each transition. In addition, the non-uniform broadening of all resonances was quantitatively predicted using a lineshape model based on D- and r-strain. As the temperature is increased from 2K, an 11-line hyperfine pattern characteristic of dinuclear Mn(II) is first observed from the S=3 manifold. D- and r-strain are the dominate broadening effects that determine where the hyperfine pattern will be resolved. A single unique parameter set was found to simulate all spectra arising for all temperatures, microwave frequencies, and microwave modes. The simulations are quantitative, allowing for the first time the determination of species concentrations directly from EPR spectra. Thus, this work describes the first method for the quantitative characterization of EPR spectra of dinuclear manganese centers in model complexes and proteins. The exchange coupling parameter J for complex 1 was determined (J=-1.5+/-0.3 cm(-1); H(ex)=-2JS(1).S(2)) and found to be in agreement with a previous determination from magnetization. The phenomenon of exchange striction was found to be insignificant for 1.


Subject(s)
Algorithms , Electron Spin Resonance Spectroscopy/methods , Manganese Compounds/chemistry , Manganese/chemistry , Models, Molecular , Computer Simulation , Molecular Conformation
SELECTION OF CITATIONS
SEARCH DETAIL