Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 286: 353-63, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25499313

ABSTRACT

Since that fast food consumption have raised concerns about people's health, we evaluated the influence of trans fat consumption on behavioral, biochemical and molecular changes in the brain-cortex of second generation rats exposed to a model of mania. Two successive generations of female rats were supplemented with soybean oil (SO, rich in n-6 FA, control group), fish oil (FO, rich in n-3 FA) and hydrogenated vegetable fat (HVF, rich in trans FA) from pregnancy, lactation to adulthood, when male rats from 2nd generation received amphetamine (AMPH-4 mg/kg-i.p., once a day, for 14 days) treatment. AMPH increased locomotor index in all animals, which was higher in the HVF group. While the FO group showed increased n-3 polyunsaturated fatty acid (PUFA) incorporation and reduced n-6/n-3 PUFA ratio, HVF allowed trans fatty acid (TFA) incorporation and increased n-6/n-3 PUFA ratio in the brain-cortex. In fact, the FO group showed minor AMPH-induced hyperactivity, decreased reactive species (RS) generation per se, causing no changes in protein carbonyl (PC) levels and dopamine transporter (DAT). FO supplementation showed molecular changes, since proBDNF was increased per se and reduced by AMPH, decreasing the brain-derived neurotrophic factor (BDNF) level following drug treatment. Conversely, HVF was related to increased hyperactivity, higher PC level per se and higher AMPH-induced PC level, reflecting on DAT, whose levels were decreased per se as well as in AMPH-treated groups. In addition, while HVF increased BDNF-mRNA per se, AMPH reduced this value, acting on BDNF, whose level was lower in the same AMPH-treated experimental group. ProBDNF level was influenced by HVF supplementation, but it was not sufficient to modify BDNF level. These findings reinforce that prolonged consumption of trans fat allows TFA incorporation in the cortex, facilitating hyperactive behavior, oxidative damages and molecular changes. Our study is a warning about cross-generational consumption of processed food, since high trans fat may facilitate the development of neuropsychiatric conditions, including bipolar disorder (BD).


Subject(s)
Bipolar Disorder/metabolism , Bipolar Disorder/psychology , Cerebral Cortex/metabolism , Trans Fatty Acids/toxicity , Age Factors , Amphetamine , Animals , Bipolar Disorder/chemically induced , Brain Chemistry , Brain-Derived Neurotrophic Factor/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Fatty Acids, Omega-3/analysis , Fatty Acids, Omega-6/analysis , Female , Fish Oils , Male , Motor Activity , Pregnancy , Protein Carbonylation , Rats , Rats, Wistar , Reactive Oxygen Species , Soybean Oil , Trans Fatty Acids/analysis
2.
Neuroscience ; 278: 40-50, 2014 Oct 10.
Article in English | MEDLINE | ID: mdl-25130558

ABSTRACT

Alzheimer's disease (AD) is the most common and devastating neurodegenerative disease. The etiology of AD has yet to be fully understood, and common treatments remain largely non-efficacious. The amyloid hypothesis posits that extracellular amyloid-ß (Aß) deposits are the fundamental etiological factor of the disease. The present study tested the organoselenium compound diphenyl-diselenide (PhSe)2, which is characterized by its antioxidant and antiinflammatory properties and has shown efficacy in several neurodegenerative disease models. We employed a transgenic Caenorhabditis elegans AD model to analyze the effects of (PhSe)2 treatment on Aß peptide-induced toxicity. Chronic exposure to (PhSe)2 attenuated oxidative stress induced by Aß1-42, with concomitant recovery of associative learning memory in C. elegans. Additionally, (PhSe)2 decreased Aß1-42 transgene expression, suppressed Aß1-42 peptide, and downregulated hsp-16.2 by reducing the need for this chaperone under Aß1-42-induced toxicity. These observations suggest that (PhSe)2 plays an important role in protecting against oxidative stress-induced toxicity, thus representing a promising pharmaceutical modality that attenuates Aß1-42 expression.


Subject(s)
Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Antioxidants/administration & dosage , Organoselenium Compounds/administration & dosage , Peptide Fragments/antagonists & inhibitors , Aldicarb/pharmacology , Alzheimer Disease/psychology , Amyloid beta-Peptides/metabolism , Animals , Animals, Genetically Modified , Association Learning/drug effects , Caenorhabditis elegans , Caenorhabditis elegans Proteins/metabolism , Cholinesterase Inhibitors/pharmacology , Disease Models, Animal , Heat-Shock Proteins/metabolism , Motor Activity/drug effects , Oxidative Stress/drug effects , Peptide Fragments/metabolism
3.
Environ Toxicol ; 29(6): 621-30, 2014 Jun.
Article in English | MEDLINE | ID: mdl-22700419

ABSTRACT

The heavy metal mercury is a known toxin, but while the mechanisms involved in mercury toxicity have been well demonstrated in vertebrates, little is known about toxicological effects of this metal in invertebrates. Here, we present the results of our study investigating the effects associated with exposure of fruit fly Drosophila melanogaster to inorganic mercury (HgCl2 ). We quantify survival and locomotor performance as well as a variety of biochemical parameters including antioxidant status, MAPK phosphorylation and gene expression following mercury treatment. Our results demonstrate that exposure to Hg(II) through diet induced mortality and affected locomotor performance as evaluated by negative geotaxis, in D. melanogaster. We also saw a significant impact on the antioxidant system including an inhibition of acetylcholinesterase (Ache), glutathione S-transferase (GST) and superoxide dismutase (SOD) activities. We found no significant alteration in the levels of mRNA of antioxidant enzymes or NRF-2 transcriptional factor, but did detect a significant up regulation of the HSP83 gene. Mercury exposure also induced the phosphorylation of JNK and ERK, without altering p38(MAPK) and the concentration of these kinases. In parallel, Hg(II) induced PARP cleavage in a 89 kDa fragment, suggesting the triggering of apoptotic cell death in response to the treatment. Taken together, this data clarifies and extends our understanding of the molecular mechanisms mediating Hg(II) toxicity in an invertebrate model.


Subject(s)
Antioxidants/metabolism , Drosophila melanogaster/drug effects , Mercury/toxicity , p38 Mitogen-Activated Protein Kinases/metabolism , Acetylcholinesterase/metabolism , Animals , Apoptosis/drug effects , Drosophila melanogaster/metabolism , Glutathione Transferase/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Lipid Peroxidation , Locomotion/drug effects , MAP Kinase Signaling System/drug effects , Mercuric Chloride/toxicity , Oxidative Stress/drug effects , Phosphorylation , Superoxide Dismutase/metabolism
4.
Comp Biochem Physiol C Toxicol Pharmacol ; 147(2): 198-204, 2008 Mar.
Article in English | MEDLINE | ID: mdl-17936691

ABSTRACT

The main objective of the present study was to compare the inhibitory effect of diphenyl diselenide (PhSe)(2) and Pb(2+) on mice and fruit fly delta-Aminolevulinate dehydratase (delta-ALA-D). Optimum pH was quite different for mice (pH 6.5) and flies (pH 8.5). At pH 8.5, the inhibitory potency of (PhSe)(2) was higher for the fruit flies (IC(50) 8.2 micromol/l) than for mice (IC(50) 19.5 micromol/l). Pb(2+) inhibited mice delta-ALA-D at pH 6.5 (IC(50) 6.2 micromol/l) and 8.5 (IC(50) 5.6 micromol/l) with higher potency than the fly enzyme (IC(50) 43.7 micromol/l). delta-ALA-D transcription was reduced by 15% in flies exposed to 0.3 mmol/kg (PhSe)(2), which is similar to the reduction observed in activity measured in the presence of dithiothreitol. The three-dimensional prediction by SWISS-PROT mouse and fly delta-ALA-D revealed differences in the number of hydrogen bonds and turns for the 2 enzymes. Sulfhydryl groups (-SH) that could be oxidized by (PhSe)(2) are conserved in the two sources of enzyme. Distinct responsiveness to pH, (PhSe)(2) and Pb(2+) of these enzymes may be related to subtle differences in tertiary or quaternary structure of mouse and fly delta-ALA-D. Furthermore, mechanism underlying enzyme inhibition after in vivo exposure seems to be different for Drosophila melanogaster and rodent enzymes.


Subject(s)
Benzene Derivatives/toxicity , Drosophila melanogaster/enzymology , Gene Expression Regulation, Enzymologic/drug effects , Organoselenium Compounds/toxicity , Porphobilinogen Synthase/genetics , Transcription, Genetic/drug effects , Animals , Male , Mice , Porphobilinogen Synthase/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...