Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 57(5): 1011-1018, 2018 Feb 10.
Article in English | MEDLINE | ID: mdl-29469880

ABSTRACT

Polarization observation of sky radiation is the frontier approach to improve the remote sensing of atmospheric components, e.g., aerosol and clouds. The polarization calibration of the ground-based Sun-sky radiometer is the basis for obtaining accurate degree of linear polarization (DOLP) measurement. In this paper, a DOLP calibration method based on a laboratory polarized light source (POLBOX) is introduced in detail. Combined with the CE318-DP Sun-sky polarized radiometer, a calibration scheme for DOLP measurement is established for the spectral range of 440-1640 nm. Based on the calibration results of the Sun-sky radiometer observation network, the polarization calibration coefficient and the DOLP calibration residual are analyzed statistically. The results show that the DOLP residual of the calibration scheme is about 0.0012, and thus it can be estimated that the final DOLP calibration accuracy of this method is about 0.005. Finally, it is verified that the accuracy of the calibration results is in accordance with the expected results by comparing the simulated DOLP with the vector radiative transfer calculations.

2.
Atmos Meas Tech ; 11(2): 949-969, 2018 Mar 02.
Article in English | MEDLINE | ID: mdl-32699562

ABSTRACT

Observations of multiwavelength Mie-Raman lidar taken during the SHADOW field campaign are used to analyze a smoke-dust episode over West Africa on 24-27 December 2015. For the case considered, the dust layer extended from the ground up to approximately 2000 m while the elevated smoke layer occurred in the 2500-4000 m range. The profiles of lidar measured backscattering, extinction coefficients, and depolarization ratios are compared with the vertical distribution of aerosol parameters provided by the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). The MERRA-2 model simulated the correct location of the near-surface dust and elevated smoke layers. The values of modeled and observed aerosol extinction coefficients at both 355 and 532 nm are also rather close. In particular, for the episode reported, the mean value of difference between the measured and modeled extinction coefficients at 355 nm is 0.01 km-1 with SD of 0.042 km-1. The model predicts significant concentration of dust particles inside the elevated smoke layer, which is supported by an increased depolarization ratio of 15 % observed in the center of this layer. The modeled at 355 nm the lidar ratio of 65 sr in the near-surface dust layer is close to the observed value (70 ± 10) sr. At 532 nm, however, the simulated lidar ratio (about 40 sr) is lower than measurements (55 ± 8 sr). The results presented demonstrate that the lidar and model data are complimentary and the synergy of observations and models is a key to improve the aerosols characterization.

3.
Atmos Meas Tech ; 10(10): 3743-3781, 2017 Oct.
Article in English | MEDLINE | ID: mdl-33505530

ABSTRACT

This study evaluates the potential of using aerosol optical depth (τ a) measurements to characterise the microphysical and optical properties of atmospheric aerosols. With this aim, we used the recently developed GRASP (Generalized Retrieval of Aerosol and Surface Properties) code for numerical testing of six different aerosol models with different aerosol loads. The direct numerical simulations (self-consistency tests) indicate that the GRASP-AOD retrieval provides modal aerosol optical depths (fine and coarse) to within 0.01 of the input values. The retrieval of the fine-mode radius, width and volume concentration are stable and precise if the real part of the refractive index is known. The coarse-mode properties are less accurate, but they are significantly improved when additional a priori information is available. The tests with random simulated errors show that the uncertainty in the bimodal log-normal size distribution parameters increases as the aerosol load decreases. Similarly, the reduction in the spectral range diminishes the stability of the retrieved parameters. In addition to these numerical studies, we used optical depth observations at eight AERONET locations to validate our results with the standard AERONET inversion products. We found that bimodal log-normal size distributions serve as useful input assumptions, especially when the measurements have inadequate spectral coverage and/or limited accuracy, such as moon photometry. Comparisons of the mode median radii between GRASP-AOD and AERONET indicate average differences of 0.013 µm for the fine mode and typical values of 0.2-0.3 µm for the coarse mode. The dominant mode (i.e. fine or coarse) indicates a 10 % difference in mode radii between the GRASP-AOD and AERONET inversions, and the average of the difference in volume concentration is around 17 % for both modes. The retrieved values of the fine-mode τ a(500) using GRASP-AOD are generally between those values obtained by the standard AERONET inversion and the values obtained by the AERONET spectral deconvolution algorithm (SDA), with differences typically lower than 0.02 between GRASP-AOD and both algorithms. Finally, we present some examples of application of GRASP-AOD inversion using moon photometry and the airborne PLASMA sun photometer during the ChArMEx summer 2013 campaign in the western Mediterranean.

4.
Appl Opt ; 55(27): 7624-30, 2016 Sep 20.
Article in English | MEDLINE | ID: mdl-27661591

ABSTRACT

The Cimel new technologies allow both daytime and nighttime aerosol optical depth (AOD) measurements. Although the daytime AOD calibration protocols are well established, accurate and simple nighttime calibration is still a challenging task. Standard lunar-Langley and intercomparison calibration methods both require specific conditions in terms of atmospheric stability and site condition. Additionally, the lunar irradiance model also has some known limits on its uncertainty. This paper presents a simple calibration method that transfers the direct-Sun calibration constant, V0,Sun, to the lunar irradiance calibration coefficient, CMoon. Our approach is a pure calculation method, independent of site limits, e.g., Moon phase. The method is also not affected by the lunar irradiance model limitations, which is the largest error source of traditional calibration methods. Besides, this new transfer calibration approach is easy to use in the field since CMoon can be obtained directly once V0,Sun is known. Error analysis suggests that the average uncertainty of CMoon over the 440-1640 nm bands obtained with the transfer method is 2.4%-2.8%, depending on the V0,Sun approach (Langley or intercomparison), which is comparable with that of lunar-Langley approach, theoretically. In this paper, the Sun-Moon transfer and the Langley methods are compared based on site measurements in Beijing, and the day-night measurement continuity and performance are analyzed.

5.
Appl Opt ; 52(11): 2226-34, 2013 Apr 10.
Article in English | MEDLINE | ID: mdl-23670750

ABSTRACT

A calibration method is introduced to transfer calibration constants from the reference to secondary sunphotometers using a laboratory integrating sphere as a light source, instead of the traditional transferring approach performed at specific calibration sites based on sunlight. The viewing solid angle and spectral response effects of the photometer are taken into account in the transfer, and thus the method can be applied to different types of sunphotometers widely used in the field of atmospheric observation. A laboratory experiment is performed to illustrate this approach for four types of CIMEL CE318 sunphotometers belonging to the aerosol robotic network (AERONET). The laboratory calibration method shows an average difference of 1.4% from the AERONET operational calibration results, while a detailed error analysis suggests that the uncertainty agrees with the estimation and could be further improved. Using this laboratory calibration approach is expected to avoid weather influences and decrease data interruption due to operationally required periodic calibration operations. It also provides a basis for establishing a network including different sunphotometers for worldwide aerosol measurements, based on a single standard calibration reference.

6.
Appl Opt ; 49(8): 1249-56, 2010 Mar 10.
Article in English | MEDLINE | ID: mdl-20220880

ABSTRACT

We establish a polarimetric reference for the degree of linear polarization (DOLP) measurement calibration, based on direct and reflected solar light, with a theoretical error of about 0.0012. This calibration source can be used to calibrate polarized radiometers instead of complex laboratory devices and can respond from UV to near infrared wavelengths. A two-step method for calibrating the DOLP measurement is proposed and applied to a ground-based polarized radiometer. The first step is correcting the transmittance difference between polarizer units using the direct solar beam, while the second step corrects possible bias in DOLP measurement using the reflected solar light as a reference. Based on instrument characterization, calibration results obtained with the new polarized sun-sky radiometer, CE-318-DP, are discussed and compared with laboratory results.

7.
Appl Opt ; 47(10): 1368-77, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-18382558

ABSTRACT

Two types of sunphotometric measurement are considered in this study: direct-Sun irradiance and diffuse-sky radiance. Based on CIMEL CE318 Sun-sky radiometer characteristics, we introduce a gain-corrected solid angle that allows interconverting calibration coefficients of these two types of measurement, thus realizing a "vicarious" radiance calibration. The accuracy of the gain-corrected solid angle depends on the number of available historical calibration records. The method is easy to use, provided that at least one laboratory calibration has been made previously. Examples coming from three distinct CE318 versions belonging to the AERONET/PHOTONS network are presented to provide details on the vicarious calibration method and protocols. From the error propagation analysis and the comparison with laboratory results, the uncertainty of the vicarious radiance calibration is shown to be comparable with the laboratory one, e.g., 3%-5%.

8.
Appl Opt ; 46(9): 1548-53, 2007 Mar 20.
Article in English | MEDLINE | ID: mdl-17334447

ABSTRACT

We have systematically processed one year of sunphotometer measurements (recorded at five AERONET/PHOTONS sites in Africa) in order to assess mineral dust optical properties with the use of a new polarimetry-based algorithm. We consider the Cimel CE318 polarized sunphotometer version to obtain single-scattering albedo, scattering phase matrix elements F(11) and F(12) for dust aerosols selected with Angström exponents ranging from -0.05 to 0.25. Retrieved F(11) and F(12) differ significantly from those of spherical particles. The degree of linear polarization -F(12)/F(11) for single scattering of atmospheric total column dust aerosols in the case of unpolarized incident light is systematically retrieved for the first time to our knowledge from sunphotometer measurements and shows consistency with previous laboratory characterizations of nonspherical particles.


Subject(s)
Aerosols/analysis , Aerosols/chemistry , Algorithms , Dust/analysis , Image Interpretation, Computer-Assisted/methods , Photometry/methods , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...