Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 28(16): 23862-23873, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32752376

ABSTRACT

The imaging depth of field (DOF) of white-light illuminated objects is extended by carefully integrating two image-processing techniques, one optical and one digital. The optical technique makes use of a tailored phase mask positioned at the pupil of the imaging system to cause different color channels to have different focal lengths; accordingly, the phase-mask equipped imaging system acquires a high resolution and reasonably focused image in at least one of the three, red, green, blue (RGB), color channels at any location within the specified DOF. The digital processing comprises fusing the separate RGB images with an original technique that implements principal component analysis to deliver the overall sharpest grayscale composite image throughout the DOF region. The obtained experimental results agree well with the theoretical predictions and demonstrate the capability of the integrated technique to extend the DOF.

2.
Sensors (Basel) ; 18(7)2018 Jul 04.
Article in English | MEDLINE | ID: mdl-29973517

ABSTRACT

Attenuation and group delay effects on millimeter wave (MMW) propagation in clouds and fog are studied theoretically and verified experimentally using high resolution radar in an indoor space filled with artificial fog. In the theoretical analysis, the frequency-dependent attenuation and group delay were derived via the permittivity of the medium. The results are applied to modify the millimeter-wave propagation model (MPM) and employed to study the effect of fog and cloud on the accuracy of the Frequency-Modulated Continuous-Wave (FMCW) radar operating in millimeter wavelengths. Artificial fog was generated in the experimental study to demonstrate ultra-low visibility in a confined space. The resulted attenuation and group delay were measured using FMCW radar operating at 320⁻330 GHz. It was found that apart from the attenuation, the incremental group delay caused by the fog also played a role in the accuracy of the radar. The results were compared to the analytical model. It was shown that although the artificial fog has slight different characteristics compare to the natural fog and clouds, in particle composition, size, and density, the model predictions were good, pointing out that the dispersive effects should be considered in the design of remote sensing radars operating in millimeter and sub-millimeter wavelengths.

SELECTION OF CITATIONS
SEARCH DETAIL
...