Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Anal Chem ; 96(24): 9935-9943, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38847283

ABSTRACT

Biopharmaceuticals, such as monoclonal antibodies (mAbs), need to maintain their chemical and physical stability in formulations throughout their lifecycle. It is known that exposure of mAbs to light, particularly UV, triggers chemical and physical degradation, which can be exacerbated by trace amounts of photosensitizers in the formulation. Although routine assessments of degradation following defined UV dosages are performed, there is a fundamental lack of understanding regarding the intermediates, transient reactive species, and radicals formed during illumination, as well as their lifetimes and immediate impact post-illumination. In this study, we used light-coupled NMR spectroscopy to monitor in situ live spectral changes in sealed samples during and after UV-A illumination of different formulations of four mAbs without added photosensitizers. We observed a complex evolution of spectra, reflecting the appearance within minutes of transient radicals during illumination and persisting for minutes to tens of minutes after the light was switched off. Both mAb and excipient signals were strongly affected by illumination, with some exhibiting fast irreversible photodegradation and others exhibiting partial recovery in the dark. These effects varied depending on the mAb and the presence of excipients, such as polysorbate 80 (PS80) and methionine. Complementary ex situ high-performance size-exclusion chromatography analysis of the same formulations post-UV exposure in the chamber revealed significant loss of purity, confirming formulation-dependent degradation. Both approaches suggested the presence of degradation processes initiated by light but continuing in the dark. Further studies on photoreaction intermediates and transient reactive species may help mitigate the impact of light on biopharmaceutical degradation.


Subject(s)
Antibodies, Monoclonal , Ultraviolet Rays , Antibodies, Monoclonal/chemistry , Magnetic Resonance Spectroscopy , Photolysis , Drug Compounding , Drug Stability , Light
2.
Inorg Chem ; 63(20): 9084-9097, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38701516

ABSTRACT

Photochemical ligand release from metal complexes may be exploited in the development of novel photoactivated chemotherapy agents for the treatment of cancer and other diseases. Highly intriguing photochemical behavior is reported for two ruthenium(II) complexes bearing conformationally flexible 1,2,3-triazole-based ligands incorporating a methylene spacer to form 6-membered chelate rings. [Ru(bpy)2(pictz)]2+ (1) and [Ru(bpy)2(btzm)]2+ (2) (bpy = 2,2'-bipyridyl; pictz = 1-(picolyl)-4-phenyl-1,2,3-triazole; btzm = bis(4-phenyl-1,2,3-triazol-4-yl)methane) exhibit coordination by the triazole ring through the less basic N2 atom as a consequence of chelation and readily undergo photochemical release of the pictz and btzm ligands (ϕ = 0.079 and 0.091, respectively) in acetonitrile solution to form cis-[Ru(bpy)2(NCMe)2]2+ (3) in both cases. Ligand-loss intermediates of the form [Ru(bpy)2(κ1-pictz or κ1-btzm)(NCCD3)]2+ are detected by 1H NMR spectroscopy and mass spectrometry. Photolysis of 1 yields three ligand-loss intermediates with monodentate pictz ligands, two of which form through simple decoordination of either the pyridine or triazole donor with subsequent solvent coordination (4-tz(N2) and 4-py, respectively). The third intermediate, shown to be able to form photochemically directly from 1, arises through linkage isomerism in which the monodentate pictz ligand is coordinated by the triazole N3 atom (4-tz(N3)) with a comparable ligand-loss intermediate with an N3-bound κ1-btzm ligand also observed for 2.

3.
Chem Commun (Camb) ; 60(8): 1012-1015, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38170515

ABSTRACT

Illumination into an electron paramagnetic resonance (EPR) spectrometer is commonly carried out through the optical window, perpendicular to the sample and magnetic field. Here we show that significant improvements can be obtained by using the walls of the EPR tube as a light guide, with the light scattered only around the sample-containing area.

4.
Chem Commun (Camb) ; 59(78): 11692-11695, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37698544

ABSTRACT

Fluorine is becoming increasingly prevalent in medicinal chemistry, both in drug molecules and in molecular probes. The presence of fluorine allows convenient monitoring of such molecules in complex environments by NMR spectroscopy. However, sensitivity is a persistent limitation of NMR, especially when molecules are present at low concentrations. Here, sensitivity issues with 1H NMR are mitigated by sharing 19F photochemically-induced dynamic nuclear polarisation with 1H nuclei. Unlike direct 1H enhancement, this method enhances 1H signals without significantly distorting multiplet intensities, and has the potential to enable the use of suitable molecules as low-concentration probes.

5.
Mol Pharm ; 20(6): 2951-2965, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37146162

ABSTRACT

Therapeutic proteins can be challenging to develop due to their complexity and the requirement of an acceptable formulation to ensure patient safety and efficacy. To date, there is no universal formulation development strategy that can identify optimal formulation conditions for all types of proteins in a fast and reliable manner. In this work, high-throughput characterization, employing a toolbox of five techniques, was performed on 14 structurally different proteins formulated in 6 different buffer conditions and in the presence of 4 different excipients. Multivariate data analysis and chemometrics were used to analyze the data in an unbiased way. First, observed changes in stability were primarily determined by the individual protein. Second, pH and ionic strength are the two most important factors determining the physical stability of proteins, where there exists a significant statistical interaction between protein and pH/ionic strength. Additionally, we developed prediction methods by partial least-squares regression. Colloidal stability indicators are important for prediction of real-time stability, while conformational stability indicators are important for prediction of stability under accelerated stress conditions at 40 °C. In order to predict real-time storage stability, protein-protein repulsion and the initial monomer fraction are the most important properties to monitor.


Subject(s)
Antibodies, Monoclonal , Chemometrics , Humans , Protein Stability , Antibodies, Monoclonal/chemistry , Protein Unfolding , Protein Conformation , Drug Stability
6.
J Pharm Sci ; 112(2): 404-410, 2023 02.
Article in English | MEDLINE | ID: mdl-36257338

ABSTRACT

Surfactants are commonly used in biopharmaceutical formulations to stabilize proteins against aggregation. However, the choice of a suitable surfactant for a particular protein is decided mostly empirically, and their mechanism of action on molecular level is largely unknown. Here we show that a straightforward label-free method, saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopy, can be used to detect protein-surfactant interactions in formulations of a model protein, interferon alpha. We find that polysorbate 20 binds with its fatty acid to interferon, and that the binding is stronger at pH closer to the isoelectric point of the protein. In contrast, we did not detect interactions between poloxamer 407 and interferon alpha. Neither of the two surfactants affected the tertiary structure and the thermal stability of the protein as evident from circular dichroism and nanoDSF measurements. Interestingly, both surfactants inhibited the formation of subvisible particles during long-term storage, but only polysorbate 20 reduced the amount of small soluble aggregates detected by size-exclusion chromatography. This proof-of-principle study demonstrates how STD-NMR can be employed to quickly assess surfactant-protein interactions and support the choice of surfactant in protein formulation.


Subject(s)
Polysorbates , Surface-Active Agents , Surface-Active Agents/chemistry , Polysorbates/chemistry , Interferon-alpha , Magnetic Resonance Spectroscopy/methods , Proteins/chemistry
7.
Eur J Pharm Biopharm ; 180: 289-307, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36272656

ABSTRACT

Lipopolysaccharide (LPS) is a cell-wall component of Gram-negative bacteria which contributes to bacterial toxicity. During processes such as cell division, shedding of outer membrane vesicles, or bacterial cell death, LPS is released into the surrounding media. If such contamination got into the bloodstream, it would induce pro-inflammatory immune responses which can result in sepsis and death. Therefore, detection of LPS is essential in the pharmaceutical and food industries to prevent patients being exposed to LPS. The Limulus Amebocyte Lysate (LAL) assay is the current major assay used by industry to detect and quantify LPS contamination. However, in recent years the phenomenon of Low Endotoxin Recovery (LER) has gained significant scientific attention. The phenomenon describes the inability of LAL assays, in some cases, to detect LPS due to a masking effect caused by interaction with formulation excipients. Although the mechanism of LER has not been fully determined, it is widely thought that the origin of the effect is associated with these interactions perturbing the supramolecular formation of LPS aggregates. Whilst the phenomenon of LER is highly complex and remains to be entirely understood, herein we aim to provide a state-of-the-art review of the ongoing and, at times, controversial topics of LER research. We overview the current understanding of the relationship between LPS structure and toxicity, conditions in which the supramolecular arrangement of LPS can be altered, the hypothesised mechanisms of LER, and discuss the possible risk of masked LPS remaining biologically toxic upon administration to patients.


Subject(s)
Endotoxins , Lipopolysaccharides , Humans , Endotoxins/chemistry , Lipopolysaccharides/chemistry , Gram-Negative Bacteria , Biological Assay , Drug Contamination
8.
Chem Commun (Camb) ; 58(85): 11973-11976, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36205575

ABSTRACT

Photocaging is an attractive strategy to control molecular behaviour, for example, in chemical synthesis, interaction studies or photodynamic therapies. Here, we demonstrate that in situ illumination by the LED NMRtorch approach enables effective and controlled photocage release with simultaneous monitoring of subsequent reactions by solution NMR spectroscopy.


Subject(s)
Lighting , Delayed-Action Preparations , Magnetic Resonance Spectroscopy
9.
Org Biomol Chem ; 20(44): 8693-8713, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36285801

ABSTRACT

Condensation of 1,5-disubstituted pent-1-en-4-yn-1-ones with arylhydrazines in acidified alcohol results mainly in the formation of the corresponding arylhydrazones with traces of the side products of cyclization at the double bond - 1,5-diaryl-3-(arylethynyl)-4,5-dihydro-1H-pyrazoles (pyrazolines). Arylhydrazones are cyclized only by refluxing in high-boiling polar solvents (DMF and ethylene glycol), with the selective formation of 1,5-disubstituted 3-styrylpyrazoles in up to 77-95% yields. Thermodynamically, the cyclization of arylhydrazones at the triple bond is the most preferable pathway, as shown by DFT calculations and preparative synthesis experiments. Thus, we demonstrate that the reactions of arylhydrazines with 1,5-disubstituted pent-1-en-4-yn-1-ones lead to the formation of arylhydrazones and side pyrazoline impurities in a parallel (not consecutive) manner. 2-Hydrazinylpyridine interacts with 1,5-disubstituted pent-1-en-4-yn-1-ones in some other way, giving not pyridinylhydrazones but 2-(5-styryl-3-phenyl-1H-pyrazol-1-yl)pyridines (despite the acidity of the medium). The authors have developed a gram-scale synthesis method for these compounds, which were obtained in up to 60-82% yields. Besides, we have developed the synthesis method for certain styrylpyrazoles, which are quite promising substances for use as fluorescent probes. Their spectral-luminescence characteristics were examined as well as their complexing with Hg2+, Cd2+, and Pb2+ ions.


Subject(s)
Luminescence , Pyrazoles , Cyclization , Pyrazoles/chemistry , Pyridines
10.
Nat Commun ; 13(1): 1767, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35365630

ABSTRACT

Liquid-liquid phase separation (LLPS) of protein solutions is increasingly recognised as an important phenomenon in cell biology and biotechnology. However, opalescence and concentration fluctuations render LLPS difficult to study, particularly when characterising the kinetics of the phase transition and layer separation. Here, we demonstrate the use of a probe molecule trifluoroethanol (TFE) to characterise the kinetics of protein LLPS by NMR spectroscopy. The chemical shift and linewidth of the probe molecule are sensitive to local protein concentration, with this sensitivity resulting in different characteristic signals arising from the dense and lean phases. Monitoring of these probe signals by conventional bulk-detection 19F NMR reports on the formation and evolution of both phases throughout the sample, including their concentrations and volumes. Meanwhile, spatially-selective 19F NMR, in which spectra are recorded from smaller slices of the sample, was used to track the distribution of the different phases during layer separation. This experimental strategy enables comprehensive characterisation of the process and kinetics of LLPS, and may be useful to study phase separation in protein systems as a function of their environment.


Subject(s)
Proteins , Kinetics , Magnetic Resonance Spectroscopy , Phase Transition
11.
J Org Chem ; 87(9): 5916-5924, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35394780

ABSTRACT

An interaction of 1,5-diaryl-3-X-pent-4-yn-1-ones (where X stands for piperidin-1-yl, morpholin-4-yl, 4-methylpiperazin-1-yl) with arylhydrazines proceeds at room temperature and results in 3-aryl-5-arylethynyl-1-phenyl-4,5-dihydro-1H-pyrazoles with up to 57-73% yields. Under similar conditions, the cyclocondensation of conjugated 2,4,1-enynones with arylhydrazine proceeds only in the presence of cyclic amines. 1,5-Diaryl-3-X-pent-4-yn-1-ones are reported as synthetic equivalents of conjugated 2,4,1-enynones in reactions with arylhydrazines. On the basis of obtained data, there are highly efficient methods developed for the synthesis of 5-arylethynyl-substituted 4,5-dihydro-1H-pyrazoles, as well as for similarly structured 1H-pyrazoles prepared by oxidation in AcOH. Presented products possess quite marked fluorescent abilities. Emission maximum wavelengths are located at 453-465 and 363-400 nm, respectively; certain compounds show extremely large Stokes shifts that may reach 91,000 cm-1.


Subject(s)
Acetylene , Alkynes , Ketones , Pargyline/analogs & derivatives , Propylamines , Pyrazoles
12.
Molecules ; 27(4)2022 Feb 13.
Article in English | MEDLINE | ID: mdl-35209045

ABSTRACT

Reaction of linear conjugated enynones, 1,5-diarylpent-2-en-4-yn-1-ones [Ar1C≡CCH=CHC(=O)Ar2], with 3-oxo-3-phenylpropanenitrile (NCCH2COPh) in the presence of sodium methoxide MeONa as a base in MeOH at room temperature for 4-26 h affords polyfunctional δ-diketones as a product of regioselective Michael addition to the double carbon-carbon bond of starting enynones. The δ-diketones have been formed as mixtures of two diastereomers in a ratio of 2.5:1 in good general yields of 53-98%. A synthetic potential of the obtained δ-diketones has been demonstrated by heterocyclization with hydrazine into substututed 5,6-dihydro-4H-1,2-diazepine.

13.
Commun Chem ; 5(1): 90, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-36697806

ABSTRACT

In situ illumination of liquid-state nuclear magnetic resonance (NMR) samples makes it possible for a wide range of light-dependent chemical and biological phenomena to be studied by the powerful analytical technique. However, the position of an NMR sample deep within the bore of the spectrometer magnet renders such illumination challenging. Here, we demonstrate the working principles of a sample illumination device (NMRtorch) where a lighthead containing an LED array is positioned directly at the top of an NMRtorch tube which is inserted into the NMR spectrometer. The wall of the tube itself acts as a light guide, illuminating the sample from the outside. We explore how this new setup performs in a number of photo-NMR applications, including photoisomerisation and photo-chemically induced dynamic nuclear polarisation (photo-CIDNP), and demonstrate the potential for ultraviolet (UV) degradation studies with continuous online NMR assessment. This setup enables users of any typical liquid-state spectrometer to easily perform in situ photo-NMR experiments, using a wide range of wavelengths.

14.
MAbs ; 13(1): 1940666, 2021.
Article in English | MEDLINE | ID: mdl-34225583

ABSTRACT

Subcutaneous injection of a low volume (<2 mL) high concentration (>100 mg/mL) formulation is an attractive administration strategy for monoclonal antibodies (mAbs) and other biopharmaceutical proteins. Using concentrated solutions may also be beneficial at various stages of bioprocessing. However, concentrating proteins by conventional techniques, such as ultrafiltration, can be time consuming and challenging. Isolation of the dense fraction produced by macroscopic liquid-liquid phase separation (LLPS) has been suggested as a means to produce high-concentration solutions, but practicality of this method, and the stability of the resulting protein solution have not previously been demonstrated. In this proof-of-concept study, we demonstrate that LLPS can be used to concentrate a mAb solution to >170 mg/mL. We show that the structure of the mAb is not altered by LLPS, and unperturbed mAb is recoverable following dilution of the dense fraction, as judged by 1H nuclear magnetic resonance spectroscopy. Finally, we show that the physical properties and stability of a model high concentration protein formulation obtained from the dense fraction can be improved, for example through the addition of the excipient arginine·glutamate. This results in a stable high-concentration protein formulation with reduced viscosity and no further macroscopic LLPS. Concentrating mAb solutions by LLPS represents a simple and effective technique to progress toward producing high-concentration protein formulations for bioprocessing or administration.AbbreviationsArginine·glutamate (Arg·Glu), Carr-Purcell-Meiboom-Gill (CPMG), critical temperature (TC), high-performance size-exclusion chromatography (HPSEC), liquid-liquid phase separation (LLPS), monoclonal antibody (mAb), nuclear magnetic resonance (NMR), transverse relaxation rate (R2).


Subject(s)
Antibodies, Monoclonal/chemistry , Liquid-Liquid Extraction/methods , Protein Stability , Chemistry, Pharmaceutical/methods , Humans , Pharmaceutical Solutions/chemistry , Proof of Concept Study
15.
J Org Chem ; 86(10): 7229-7241, 2021 May 21.
Article in English | MEDLINE | ID: mdl-33955756

ABSTRACT

The cyclocondensation of cross-conjugated enynones, dienynones, and trienynones (easily available due to low-cost starting compounds) with arylhydrazines leads to the regioselective synthesis of pyrazole derivatives (dihetaryl-substituted ethens, buta-1,3-diens, and hexa-1,3,5-triens) or results in 4,5-dihydro-1H-pyrazoles in good yield. The reaction path is controlled by the character of the substituent in enynone: the pyrazoles are obtained from the reaction of substrates that contain five-membered heteroaromatic substituents with arylhydrazines, and the 4,5-dihydro-1H-pyrazoles are obtained from the reaction of 1,5-diphenylpent-1-en-4-yn-3-one with arylhydrazines consistently. Despite the presence of a substituent, cyclocondensation of 2-hydrazinylpyridine with all of examined cross-conjugated enynones leads to the formation of pyrazoles. The reaction does not require special conditions (temperature, catalyst, inert atmosphere). The cyclocondensation pathways are determined by the electronic effect of an electron-rich five-membered heteroaromatic ring in the substrate. The synthesis allows use of various substituents and functional groups in enynone and hydrazine. The present method features high yields and simplicity of the product purification. The obtained pyrazoles possess fluorescent properties with a quantum yield up to 31%.

16.
ACS Pharmacol Transl Sci ; 4(1): 288-295, 2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33659867

ABSTRACT

Biopharmaceutical proteins are important drug therapies in the treatment of a range of diseases. Proteins, such as antibodies (Abs) and peptides, are prone to chemical and physical degradation, particularly at the high concentrations currently sought for subcutaneous injections, and so formulation conditions, including buffers and excipients, must be optimized to minimize such instabilities. Therefore, both the protein and small molecule content of biopharmaceutical formulations and their stability are critical to a treatment's success. However, assessing all aspects of protein and small molecule stability currently requires a large number of analytical techniques, most of which involve sample dilution or other manipulations which may themselves distort sample behavior. Here, we demonstrate the application of 1H nuclear magnetic resonance (NMR) spectroscopy to study both protein and small molecule content and stability in situ in high-concentration (100 mg/mL) Ab formulations. We show that protein degradation (aggregation or fragmentation) can be detected as changes in 1D 1H NMR signal intensity, while apparent relaxation rates are specifically sensitive to Ab fragmentation. Simultaneously, relaxation-filtered spectra reveal the presence and degradation of small molecule components such as excipients, as well as changes in general solution properties, such as pH. 1H NMR spectroscopy can thus provide a holistic overview of biopharmaceutical formulation content and stability, providing a preliminary characterization of degradation and acting as a triaging step to guide further analytical techniques.

17.
Eur J Pharm Biopharm ; 158: 11-20, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33137420

ABSTRACT

Development of peptide therapeutics generally involves screening of excipients that inhibit peptide-peptide interactions, hence aggregation, and improve peptide stability. We used the therapeutic peptide plectasin to develop a fast screening method that combines microscale thermophoresis titration assays and molecular dynamics simulations to relatively rank the excipients with respect to binding affinity and to study key peptide-excipient interaction hotspots on a molecular level, respectively. Additionally, 1H-13C-HSQC NMR titration experiments were performed to validate the fast screening approach. The NMR results are in qualitative agreement with results from the fast screening method demonstrating that this approach can be reliably applied to other peptides and proteins as a fast screening method to relatively rank excipients and predict possible excipient binding sites.


Subject(s)
Anti-Infective Agents/chemistry , Drug Compounding/methods , Excipients/chemistry , High-Throughput Screening Assays/methods , Peptides/chemistry , Anti-Infective Agents/therapeutic use , Humans , Infections/drug therapy , Molecular Dynamics Simulation , Peptides/therapeutic use , Proton Magnetic Resonance Spectroscopy , Reproducibility of Results
18.
Molecules ; 25(24)2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33327655

ABSTRACT

Reaction of linear conjugated enynones, 1,5-diarylpent-2-en-4-yn-1-ones, with malononitrile in the presence of lithium diisopropylamide LDA, as a base, in THF at room temperature for 3-7 h resulted in the formation of the product of dimerization, multisubstituted polyfunctional cyclohexanes, 4-aryl-2,6-bis(arylethynyl)-3-(aryloxomethyl)-4-hydroxycyclohexane-1,1-dicarbonitriles, in yields up to 60%. Varying the reaction conditions by decreasing time and temperature and changing the ratio of starting compounds (enynone and malononitrile) allowed isolating some intermediate compounds, which confirmed a plausible reaction mechanism. The relative stability of possible stereoisomers of such cyclohexanes was estimated by quantum chemical calculations (DFT method). The obtained cyclohexanes were found to possess photoluminescent properties.


Subject(s)
Alkenes/chemistry , Cyclohexanes/chemical synthesis , Nitriles/chemistry , Propylamines/chemistry , Catalysis , Chemistry Techniques, Synthetic , Dimerization , Humans , Luminescent Measurements , Molecular Structure , Quantum Theory , Stereoisomerism , Temperature
19.
Mol Pharm ; 17(9): 3298-3313, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32609526

ABSTRACT

Therapeutic peptides and proteins show enormous potential in the pharmaceutical market, but high costs in discovery and development are limiting factors so far. Single or multiple point mutations are commonly introduced in protein drugs to increase their binding affinity or selectivity. They can also induce adverse properties, which might be overlooked in a functional screen, such as a decreased colloidal or thermal stability, leading to problems in later stages of the development. In this study, we address the effect of point mutations on the stability of the 4.4 kDa antimicrobial peptide plectasin, as a case study. We combined a systematic high-throughput biophysical screen of the peptide thermal and colloidal stability using dynamic light scattering and differential scanning calorimetry with structure-based methods including small-angle X-ray scattering, analytical ultracentrifugation, and nuclear magnetic resonance spectroscopy. Additionally, we applied molecular dynamics simulations to link obtained protein stability parameters to the protein's molecular structure. Despite their predicted structural similarities, all four plectasin variants showed substantially different behavior in solution. We observed an increasing propensity of plectasin to aggregate at a higher pH, and the introduced mutations influenced the type of aggregation. Our strategy for systematically assessing the stability and aggregation of protein drugs is generally applicable and is of particular relevance, given the increasing number of protein drugs in development.


Subject(s)
Point Mutation/genetics , Pore Forming Cytotoxic Proteins/chemistry , Pore Forming Cytotoxic Proteins/genetics , Biophysics/methods , Calorimetry, Differential Scanning/methods , Dynamic Light Scattering/methods , Hydrogen-Ion Concentration , Peptides/chemistry , Peptides/genetics , Protein Aggregates/genetics , Protein Stability/drug effects
20.
Eur J Pharm Biopharm ; 151: 127-136, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32283214

ABSTRACT

One of the major challenges in formulation development of biopharmaceuticals is improving long-term storage stability, which is often achieved by addition of excipients to the final formulation. Finding the optimal excipient for a given protein is usually done using a trial-and-error approach, due to the lack of general understanding of how excipients work for a particular protein. Previously, preferential interactions (binding or exclusion) of excipients with proteins were postulated as a mechanism explaining diversity in the stabilisation effects. Weak preferential binding is however difficult to quantify experimentally, and the question remains whether the formulation process should seek excipients which preferentially bind with proteins, or not. Here, we apply solution NMR spectroscopy to comprehensively evaluate protein-excipient interactions between therapeutically relevant proteins and commonly used excipients. Additionally, we evaluate the effect of excipients on thermal and colloidal protein stability, on aggregation kinetics and protein storage stability at elevated temperatures. We show that there is a weak negative correlation between the strength of protein-excipient interactions and effect on enhancing protein thermal stability. We found that the overall protein-excipient binding per se can be a poor criterion for choosing excipients enhancing formulation stability. Experiments on a diverse set of excipients and test proteins reveal that while excipients affect all of the different aspects of protein stability, the effects are very much protein specific, and care must be taken to avoid apparent generalisations if a smaller dataset is being used.


Subject(s)
Biological Products/chemistry , Excipients/chemistry , Protein Binding/physiology , Proteins/chemistry , Chemistry, Pharmaceutical/methods , Drug Stability , Kinetics , Protein Stability
SELECTION OF CITATIONS
SEARCH DETAIL
...