Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(6)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36984245

ABSTRACT

Fe-Ga alloys (GalFeNOLs) are the focus of attention due to their enhanced magneto-elastic properties, namely, magnetostriction in low saturation magnetic fields. In the last several years, special attention has been paid to the anelastic properties of these alloys. In this review, we collected and analyzed the frequency-, amplitude-, and temperature-dependent anelasticity in Fe-Ga and Fe-Ga-based alloys in the Hertz range of forced and free-decay vibrations. Special attention is paid to anelasticity caused by phase transitions: for this purpose, in situ neutron diffraction tests with the same heating or cooling rates were carried out in parallel with temperature dependencies measurements to control ctructure and phase transitions. The main part of this review is devoted to anelastic effects in binary Fe-Ga alloys, but we also consider ternary alloys of the systems Fe-Ga-Al and Fe-Ga-RE (RE-Rare Earth elements) to discuss similarities and differences between anelastic properties in Fe-Ga and Fe-Al alloys and effect of RE elements. We report and discuss several thermally activated effects, including Zener- and Snoek-type relaxation, several transient anelastic phenomena caused by phase transitions (D03 ↔ A2, D03 → L12, L12 ↔ D019, D019 ↔ B2, Fe13Ga9 → L12+Fe6Ga5 phases), and their influence on the above-mentioned thermally activated effects. We also report amplitude-dependent damping caused by dislocations and magnetic domain walls and try to understand the paradox between the Smith-Birchak model predicting higher damping capacity for materials with higher saturation magnetostriction and existing experimental results. The main attention in this review is paid to alloys with 17-20 and 25-30%Ga as the alloys with the best functional (magnetostriction) properties. Nevertheless, we provide information on a broader range of alloys from 6 to 45%Ga. Due to the limited space, we do not discuss other mechanical and physical properties in depth but focus on anelasticity. A short introduction to the theory of anelasticity precedes the main part of this review of anelastic effects in Fe-Ga and related alloys and unsolved issues are collected in summary.

3.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 6): 1024-1033, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-32830682

ABSTRACT

Structural features and kinetics of the transition between ordered metastable b.c.c.-derived D03 and equilibrium f.c.c.-derived L12 phases of Fe-xGa alloys (x = 27.2% and 28.0%) have been analyzed by in situ real-time neutron diffraction during isothermal annealing in the temperature range 405-470°C. It has been revealed that the transition proceeds with alternation of the first- and second-order phase transformations according to a D03 → A2 → A1 → L12 scheme, where A2 and A1 are disordered b.c.c. and f.c.c. structures. Deformations of the crystal lattice that arise due to these transitions are determined. The kinetics of the L12 phase nucleation and growth were analyzed in the frame of the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model; however, only the early stage of the D03 → L12 transition is well described by the JMAK equation. The value of the Avrami exponent corresponds to the constant growth rate of the new L12 phase and decreasing nucleation rate in the Fe-27.2Ga alloy and indicates the presence of pre-existing nucleation centres of the L12 phase in the Fe-28.0Ga alloy.

SELECTION OF CITATIONS
SEARCH DETAIL
...