Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 573, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36631528

ABSTRACT

Ischemic stroke is one of the most severe polygenic brain diseases. Here, we performed further functional genetic analysis of the processes occurring in the contralateral hemisphere (CH) after ischemia-reperfusion injury in rat brain. Comparison of RNA sequencing data for subcortical samples from the ipsilateral hemisphere (IH) and CH after 90 min of transient middle cerebral artery occlusion (tMCAO) and corresponding sham-operated (SO) controls showed four groups of genes that were associated with ischemic processes in rat brain at 24 h after tMCAO. Among them, 2672 genes were differentially expressed genes (DEGs) for IH but non-DEGs for CH, 34 genes were DEGs for CH but non-DEGs for IH, and 114 genes had codirected changes in expression in both hemispheres. The remaining 16 genes exhibited opposite changes at the mRNA level in the two brain hemispheres after tMCAO. These findings suggest that the ischemic process caused by a focal ischemia induces complex bilateral reactions at the transcriptome level in the rat brain. We believe that specific genome responses in the CH and IH may provide a useful model for the study of the potential for brain repair after stroke.


Subject(s)
Brain Ischemia , Stroke , Rats , Animals , Brain/metabolism , Stroke/complications , Brain Ischemia/metabolism , Infarction, Middle Cerebral Artery/complications , Transcriptome , Disease Models, Animal
2.
Int J Mol Sci ; 23(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35806305

ABSTRACT

Ischemic stroke is a multifactorial disease with a complex etiology and global consequences. Model animals are widely used in stroke studies. Various controls, either brain samples from sham-operated (SO) animals or symmetrically located brain samples from the opposite (contralateral) hemisphere (CH), are often used to analyze the processes in the damaged (ipsilateral) hemisphere (IH) after focal stroke. However, previously, it was shown that focal ischemia can lead to metabolic and transcriptomic changes not only in the IH but also in the CH. Here, using a transient middle cerebral artery occlusion (tMCAO) model and genome-wide RNA sequencing, we identified 1941 overlapping differentially expressed genes (DEGs) with a cutoff value >1.5 and Padj < 0.05 that reflected the general transcriptome response of IH subcortical cells at 24 h after tMCAO using both SO and CH controls. Concomitantly, 861 genes were differentially expressed in IH vs. SO, whereas they were not vs. the CH control. Furthermore, they were associated with apoptosis, the cell cycle, and neurotransmitter responses. In turn, we identified 221 DEGs in IH vs. CH, which were non-DEGs vs. the SO control. Moreover, they were predominantly associated with immune-related response. We believe that both sets of non-overlapping genes recorded transcriptome changes in IH cells associated with transhemispheric differences after focal cerebral ischemia. Thus, the specific response of the CH transcriptome should be considered when using it as a control in studies of target brain regions in diseases that induce a global bilateral genetic response, such as stroke.


Subject(s)
Brain Ischemia , Stroke , Animals , Brain/metabolism , Brain Ischemia/metabolism , Disease Models, Animal , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/genetics , Rats , Sequence Analysis, RNA , Stroke/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...