Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
MAGMA ; 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38393541

ABSTRACT

OBJECTIVE: Diffusional kurtosis imaging (DKI) extends diffusion tensor imaging (DTI), characterizing non-Gaussian diffusion effects but requires longer acquisition times. To ensure the robustness of DKI parameters, data acquisition ordering should be optimized allowing for scan interruptions or shortening. Three methodologies were used to examine how reduced diffusion MRI scans impact DKI histogram-metrics: 1) the electrostatic repulsion model (OptEEM); 2) spherical codes (OptSC); 3) random (RandomTRUNC). MATERIALS AND METHODS: Pre-acquired diffusion multi-shell data from 14 female healthy volunteers (29±5 years) were used to generate reordered data. For each strategy, subsets containing different amounts of the full dataset were generated. The subsampling effects were assessed on histogram-based DKI metrics from tract-based spatial statistics (TBSS) skeletonized maps. To evaluate each subsampling method on simulated data at different SNRs and the influence of subsampling on in vivo data, we used a 3-way and 2-way repeated measures ANOVA, respectively. RESULTS: Simulations showed that subsampling had different effects depending on DKI parameter, with fractional anisotropy the most stable (up to 5% error) and radial kurtosis the least stable (up to 26% error). RandomTRUNC performed the worst while the others showed comparable results. Furthermore, the impact of subsampling varied across distinct histogram characteristics, the peak value the least affected (OptEEM: up to 5% error; OptSC: up to 7% error) and peak height (OptEEM: up to 8% error; OptSC: up to 11% error) the most affected. CONCLUSION: The impact of truncation depends on specific histogram-based DKI metrics. The use of a strategy for optimizing the acquisition order is advisable to improve DKI robustness to exam interruptions.

2.
Magn Reson Med ; 85(5): 2537-2551, 2021 05.
Article in English | MEDLINE | ID: mdl-33270935

ABSTRACT

PURPOSE: Free-water elimination DTI (FWE-DTI) has been used widely to distinguish increases of free-water partial-volume effects from tissue's diffusion in healthy aging and degenerative diseases. Because the FWE-DTI fitting is only well-posed for multishell acquisitions, a regularized gradient descent (RGD) method was proposed to enable application to single-shell data, more common in the clinic. However, the validity of the RGD method has been poorly assessed. This study aims to quantify the specificity of FWE-DTI procedures on single-shell and multishell data. METHODS: Different FWE-DTI fitting procedures were tested on an open-source in vivo diffusion data set and single-shell and multishell synthetic signals, including the RGD and standard nonlinear least-squares methods. Single-voxel simulations were carried out to compare initialization approaches. A multivoxel phantom simulation was performed to evaluate the effect of spatial regularization when comparing between methods. To test the algorithms' specificity, phantoms with two different types of lesions were simulated: with altered mean diffusivity or with modified free water. RESULTS: Plausible parameter maps were obtained with RGD from single-shell in vivo data. The plausibility of these maps was shown to be determined by the initialization. Tests with simulated lesions inserted into the in vivo data revealed that the RGD approach cannot distinguish free water from tissue mean-diffusivity alterations, contrarily to the nonlinear least-squares algorithm. CONCLUSION: The RGD FWE-DTI method has limited specificity; thus, its results from single-shell data should be carefully interpreted. When possible, multishell acquisitions and the nonlinear least-squares approach should be preferred instead.


Subject(s)
Brain , Water , Algorithms , Brain/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...