Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Front Biosci (Schol Ed) ; 16(1): 1, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38538344

ABSTRACT

BACKGROUND: Hypertrophic cardiomyopathy is the most frequent autosomal dominant disease, yet due to genetic heterogeneity, incomplete penetrance, and phenotype variability, the prognosis of the disease course in pathogenic variant carriers remains an issue. Identifying common patterns among the effects of different genetic variants is important. METHODS: We investigated the cause of familial hypertrophic cardiomyopathy (HCM) in a family with two patients suffering from a particularly severe disease. Searching for the genetic variants in HCM genes was performed using different sequencing methods. RESULTS: A new missense variant, p.Leu714Arg, was identified in exon 19 of the beta-myosin heavy chain gene (MYH7). The mutation was found in a region that encodes the 'converter domain' in the globular myosin head. This domain is essential for the conformational change of myosin during ATP cleavage and contraction cycle. Most reports on different mutations in this region describe severe phenotypic consequences. The two patients with the p.Leu714Arg mutation had heart failure early in life and died from HCM complications. CONCLUSIONS: This case presents a new likely pathogenic variant in MYH7 and supports the hypothesis that myosin converter mutations constitute a subclass of HCM mutations with a poor prognosis for the patient.


Subject(s)
Cardiomyopathy, Hypertrophic, Familial , Cardiomyopathy, Hypertrophic , Humans , Cardiac Myosins/genetics , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic, Familial/diagnostic imaging , Cardiomyopathy, Hypertrophic, Familial/genetics , Mutation , Mutation, Missense/genetics , Myosin Heavy Chains/genetics , Phenotype
2.
Int J Mol Sci ; 24(9)2023 May 05.
Article in English | MEDLINE | ID: mdl-37176039

ABSTRACT

Multiple sclerosis (MS) is an incurable, progressive chronic autoimmune demyelinating disease. Therapy for MS is based on slowing down the processes of neurodegeneration and suppressing the immune system of patients. MS is accompanied by inflammation, axon-degeneration and neurogliosis in the central nervous system. One of the directions for a new effective treatment for MS is cellular, subcellular, as well as gene therapy. We investigated the therapeutic potential of adipose mesenchymal stem cell (ADMSC) derived, cytochalasin B induced artificial microvesicles (MVs) expressing nerve growth factor (NGF) on a mouse model of multiple sclerosis experimental autoimmune encephalomyelitis (EAE). These ADMSC-MVs-NGF were tested using histological, immunocytochemical and molecular genetic methods after being injected into the tail vein of animals on the 14th and 21st days post EAE induction. ADMSC-MVs-NGF contained the target protein inside the cytoplasm. Their injection into the caudal vein led to a significant decrease in neurogliosis at the 14th and 21st days post EAE induction. Artificial ADMSC-MVs-NGF stimulate axon regeneration and can modulate gliosis in the EAE model.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Encephalomyelitis , Multiple Sclerosis , Mice , Animals , Encephalomyelitis, Autoimmune, Experimental/metabolism , Nerve Growth Factor/genetics , Axons/metabolism , Nerve Regeneration , Multiple Sclerosis/pathology , Mice, Inbred C57BL
3.
Int J Mol Sci ; 24(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36901831

ABSTRACT

Stimulating the process of angiogenesis in treating ischemia-related diseases is an urgent task for modern medicine, which can be achieved through the use of different cell types. Umbilical cord blood (UCB) continues to be one of the attractive cell sources for transplantation. The goal of this study was to investigate the role and therapeutic potential of gene-engineered umbilical cord blood mononuclear cells (UCB-MC) as a forward-looking strategy for the activation of angiogenesis. Adenovirus constructs Ad-VEGF, Ad-FGF2, Ad-SDF1α, and Ad-EGFP were synthesized and used for cell modification. UCB-MCs were isolated from UCB and transduced with adenoviral vectors. As part of our in vitro experiments, we evaluated the efficiency of transfection, the expression of recombinant genes, and the secretome profile. Later, we applied an in vivo Matrigel plug assay to assess engineered UCB-MC's angiogenic potential. We conclude that hUCB-MCs can be efficiently modified simultaneously with several adenoviral vectors. Modified UCB-MCs overexpress recombinant genes and proteins. Genetic modification of cells with recombinant adenoviruses does not affect the profile of secreted pro- and anti-inflammatory cytokines, chemokines, and growth factors, except for an increase in the synthesis of recombinant proteins. hUCB-MCs genetically modified with therapeutic genes induced the formation of new vessels. An increase in the expression of endothelial cells marker (CD31) was revealed, which correlated with the data of visual examination and histological analysis. The present study demonstrates that gene-engineered UCB-MC can be used to stimulate angiogenesis and possibly treat cardiovascular disease and diabetic cardiomyopathy.


Subject(s)
Endothelial Cells , Fetal Blood , Humans , Leukocytes, Mononuclear
4.
Int J Mol Sci ; 23(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36555486

ABSTRACT

Increasing evidence suggests that both coding and non-coding regions of sarcomeric protein genes can contribute to hypertrophic cardiomyopathy (HCM). Here, we introduce an experimental workflow (tested on four patients) for complete sequencing of the most common HCM genes (MYBPC3, MYH7, TPM1, TNNT2, and TNNI3) via long-range PCR, Oxford Nanopore Technology (ONT) sequencing, and bioinformatic analysis. We applied Illumina and Sanger sequencing to validate the results, FastQC, Qualimap, and MultiQC for quality evaluations, MiniMap2 to align data, Clair3 to call and phase variants, and Annovar's tools and CADD to assess pathogenicity of variants. We could not amplify the region encompassing exons 6-12 of MYBPC3. A higher sequencing error rate was observed with ONT (6.86-6.92%) than with Illumina technology (1.14-1.35%), mostly for small indels. Pathogenic variant p.Gln1233Ter and benign polymorphism p.Arg326Gln in MYBPC3 in a heterozygous state were found in one patient. We demonstrated the ability of ONT to phase single-nucleotide variants, enabling direct haplotype determination for genes TNNT2 and TPM1. These findings highlight the importance of long-range PCR efficiency, as well as lower accuracy of variant calling by ONT than by Illumina technology; these differences should be clarified prior to clinical application of the ONT method.


Subject(s)
Cardiomyopathy, Hypertrophic , Nanopore Sequencing , Humans , Carrier Proteins/genetics , Mutation , Cardiomyopathy, Hypertrophic/genetics , Troponin T/genetics
5.
Biomed Rep ; 13(3): 16, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32765855

ABSTRACT

Brugada syndrome (BrS) is an inherited disorder characterized by specific ST segment elevation in the right precordial leads, pseudo right bundle branch block, and a high risk of sudden cardiac death due to ventricular tachycardia. It was initially described as a monogenic disorder with an autosomal dominant mode of inheritance. It is hypothesized that modifying genetic factors, in addition to disease-causing mutations, may significantly contribute to the clinical symptoms and the risk of sudden cardiac death. These modifying factors can include mitochondrial DNA (mtDNA) variants. In particular, combination of mtDNA m.T4216C, m.A11251G, m.C15452A and m.T16126C variants (defining haplogroups T and J), is considered to be a factor that promotes manifestation of BrS manifestation, with no pro-arrhythmic effects. The aim of the present study was to confirm the reported association of BrS with MtDNA variants in a cohort of Russian patients. mtDNA haplogroups were genotyped in 47 Russian BrS probands and the prevalence of common mtDNA haplogroups was compared with the general population in European part of Russia. The distribution and prevalence of all but the J mtDNA haplogroups were comparable in BrS probands and the general Russian population. The mitochondrial J haplogroup was not found in the BrS cohort. In conclusion, it was shown that the mtDNA polymorphism, m.T4216C (haplogroups J and T) does not contribute significantly to the clinical manifestation of BrS in Russian patients.

6.
BMC Evol Biol ; 17(1): 115, 2017 05 23.
Article in English | MEDLINE | ID: mdl-28535779

ABSTRACT

BACKGROUND: The colonization of Eurasia and Australasia by African modern humans has been explained, nearly unanimously, as the result of a quick southern coastal dispersal route through the Arabian Peninsula, the Indian subcontinent, and the Indochinese Peninsula, to reach Australia around 50 kya. The phylogeny and phylogeography of the major mitochondrial DNA Eurasian haplogroups M and N have played the main role in giving molecular genetics support to that scenario. However, using the same molecular tools, a northern route across central Asia has been invoked as an alternative that is more conciliatory with the fossil record of East Asia. Here, we assess as the Eurasian macrohaplogroup R fits in the northern path. RESULTS: Haplogroup U, with a founder age around 50 kya, is one of the oldest clades of macrohaplogroup R in western Asia. The main branches of U expanded in successive waves across West, Central and South Asia before the Last Glacial Maximum. All these dispersions had rather overlapping ranges. Some of them, as those of U6 and U3, reached North Africa. At the other end of Asia, in Wallacea, another branch of macrohaplogroup R, haplogroup P, also independently expanded in the area around 52 kya, in this case as isolated bursts geographically well structured, with autochthonous branches in Australia, New Guinea, and the Philippines. CONCLUSIONS: Coeval independently dispersals around 50 kya of the West Asia haplogroup U and the Wallacea haplogroup P, points to a halfway core area in southeast Asia as the most probable centre of expansion of macrohaplogroup R, what fits in the phylogeographic pattern of its ancestor, macrohaplogroup N, for which a northern route and a southeast Asian origin has been already proposed.


Subject(s)
DNA, Mitochondrial/genetics , Human Migration , Asia, Southeastern , Australasia , DNA, Ribosomal , Female , Genetics, Medical , Genetics, Population , Haplotypes , Heterozygote , Humans , Male , Phylogeny , Phylogeography
7.
Sci Rep ; 7: 41268, 2017 01 25.
Article in English | MEDLINE | ID: mdl-28120895

ABSTRACT

The objective of this study was to identify genes targeted by both copy number and copy-neutral changes in the right coronary arteries in the area of advanced atherosclerotic plaques and intact internal mammary arteries derived from the same individuals with comorbid coronary artery disease and metabolic syndrome. The artery samples from 10 patients were screened for genomic imbalances using array comparative genomic hybridization. Ninety high-confidence, identical copy number variations (CNVs) were detected. We also identified eight copy-neutral changes (cn-LOHs) > 1.5 Mb in paired arterial samples in 4 of 10 individuals. The frequencies of the two gains located in the 10q24.31 (ERLIN1) and 12q24.11 (UNG, ACACB) genomic regions were evaluated in 33 paired arteries and blood samples. Two patients contained the gain in 10q24.31 (ERLIN1) and one patient contained the gain in 12q24.11 (UNG, ACACB) that affected only the blood DNA. An additional two patients harboured these CNVs in both the arteries and blood. In conclusion, we discovered and confirmed a gain of the 10q24.31 (ERLIN1) and 12q24.11 (UNG, ACACB) genomic regions in patients with coronary artery disease and metabolic comorbidity. Analysis of DNA extracted from blood indicated a possible somatic origin for these CNVs.


Subject(s)
Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Genomics , Metabolic Syndrome/epidemiology , Metabolic Syndrome/genetics , Comorbidity , Comparative Genomic Hybridization , Coronary Artery Disease/genetics , DNA Copy Number Variations/genetics , Humans , Male , Middle Aged , Real-Time Polymerase Chain Reaction
8.
Sci Rep ; 6: 30197, 2016 07 25.
Article in English | MEDLINE | ID: mdl-27453128

ABSTRACT

Medieval era encounters of nomadic groups of the Eurasian Steppe and largely sedentary East Europeans had a variety of demographic and cultural consequences. Amongst these outcomes was the emergence of the Lipka Tatars-a Slavic-speaking Sunni-Muslim minority residing in modern Belarus, Lithuania and Poland, whose ancestors arrived in these territories via several migration waves, mainly from the Golden Horde. Our results show that Belarusian Lipka Tatars share a substantial part of their gene pool with Europeans as indicated by their Y-chromosomal, mitochondrial and autosomal DNA variation. Nevertheless, Belarusian Lipkas still retain a strong genetic signal of their nomadic ancestry, witnessed by the presence of common Y-chromosomal and mitochondrial DNA variants as well as autosomal segments identical by descent between Lipkas and East Eurasians from temperate and northern regions. Hence, we document Lipka Tatars as a unique example of former Medieval migrants into Central Europe, who became sedentary, changed language to Slavic, yet preserved their faith and retained, both uni- and bi-parentally, a clear genetic echo of a complex population interplay throughout the Eurasian Steppe Belt, extending from Central Europe to northern China.


Subject(s)
Ethnicity/genetics , Genetic Variation/genetics , White People/genetics , China , Chromosomes, Human, Y/genetics , DNA, Mitochondrial/genetics , Europe , Genetics, Population/methods , Humans , Phylogeny , Poland , Transients and Migrants
9.
Hum Mutat ; 30(4): 496-510, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19306394

ABSTRACT

The remarkable progress in characterizing the human genome sequence, exemplified by the Human Genome Project and the HapMap Consortium, has led to the perception that knowledge and the tools (e.g., microarrays) are sufficient for many if not most biomedical research efforts. A large amount of data from diverse studies proves this perception inaccurate at best, and at worst, an impediment for further efforts to characterize the variation in the human genome. Because variation in genotype and environment are the fundamental basis to understand phenotypic variability and heritability at the population level, identifying the range of human genetic variation is crucial to the development of personalized nutrition and medicine. The Human Variome Project (HVP; http://www.humanvariomeproject.org/) was proposed initially to systematically collect mutations that cause human disease and create a cyber infrastructure to link locus specific databases (LSDB). We report here the discussions and recommendations from the 2008 HVP planning meeting held in San Feliu de Guixols, Spain, in May 2008.


Subject(s)
Databases, Genetic , Genetic Variation , Genome, Human/genetics , Computational Biology/methods , Computational Biology/standards , Genetic Predisposition to Disease , Genotype , Humans , Information Dissemination , Mutation , Phenotype , Polymorphism, Genetic , Spain
10.
PLoS One ; 2(9): e829, 2007 Sep 05.
Article in English | MEDLINE | ID: mdl-17786201

ABSTRACT

Native Americans derive from a small number of Asian founders who likely arrived to the Americas via Beringia. However, additional details about the initial colonization of the Americas remain unclear. To investigate the pioneering phase in the Americas we analyzed a total of 623 complete mtDNAs from the Americas and Asia, including 20 new complete mtDNAs from the Americas and seven from Asia. This sequence data was used to direct high-resolution genotyping from 20 American and 26 Asian populations. Here we describe more genetic diversity within the founder population than was previously reported. The newly resolved phylogenetic structure suggests that ancestors of Native Americans paused when they reached Beringia, during which time New World founder lineages differentiated from their Asian sister-clades. This pause in movement was followed by a swift migration southward that distributed the founder types all the way to South America. The data also suggest more recent bi-directional gene flow between Siberia and the North American Arctic.


Subject(s)
DNA, Mitochondrial/genetics , Indians, North American , Asia , Genotype , Haplotypes , Humans , Mutation , Phylogeny
11.
Mol Biol Evol ; 21(11): 2012-21, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15254257

ABSTRACT

It has been often stated that the overall pattern of human maternal lineages in Europe is largely uniform. Yet this uniformity may also result from an insufficient depth and width of the phylogenetic analysis, in particular of the predominant western Eurasian haplogroup (Hg) H that comprises nearly a half of the European mitochondrial DNA (mtDNA) pool. Making use of the coding sequence information from 267 mtDNA Hg H sequences, we have analyzed 830 mtDNA genomes, from 11 European, Near and Middle Eastern, Central Asian, and Altaian populations. In addition to the seven previously specified subhaplogroups, we define fifteen novel subclades of Hg H present in the extant human populations of western Eurasia. The refinement of the phylogenetic resolution has allowed us to resolve a large number of homoplasies in phylogenetic trees of Hg H based on the first hypervariable segment (HVS-I) of mtDNA. As many as 50 out of 125 polymorphic positions in HVS-I were found to be mutated in more than one subcluster of Hg H. The phylogeographic analysis revealed that sub-Hgs H1*, H1b, H1f, H2a, H3, H6a, H6b, and H8 demonstrate distinct phylogeographic patterns. The monophyletic subhaplogroups of Hg H provide means for further progress in the understanding of the (pre)historic movements of women in Eurasia and for the understanding of the present-day genetic diversity of western Eurasians in general.


Subject(s)
DNA, Mitochondrial/genetics , Asia , Ethnicity , Europe , Evolution, Molecular , Female , Gene Pool , Genetic Variation , Genetics, Population , Geography , Haplotypes , Humans , Models, Genetic , Mothers , Multigene Family , Mutation , Phylogeny
12.
Am J Hum Genet ; 73(5): 1178-90, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14574647

ABSTRACT

A maximum parsimony tree of 21 complete mitochondrial DNA (mtDNA) sequences belonging to haplogroup X and the survey of the haplogroup-associated polymorphisms in 13,589 mtDNAs from Eurasia and Africa revealed that haplogroup X is subdivided into two major branches, here defined as "X1" and "X2." The first is restricted to the populations of North and East Africa and the Near East, whereas X2 encompasses all X mtDNAs from Europe, western and Central Asia, Siberia, and the great majority of the Near East, as well as some North African samples. Subhaplogroup X1 diversity indicates an early coalescence time, whereas X2 has apparently undergone a more recent population expansion in Eurasia, most likely around or after the last glacial maximum. It is notable that X2 includes the two complete Native American X sequences that constitute the distinctive X2a clade, a clade that lacks close relatives in the entire Old World, including Siberia. The position of X2a in the phylogenetic tree suggests an early split from the other X2 clades, likely at the very beginning of their expansion and spread from the Near East.


Subject(s)
DNA, Mitochondrial/genetics , Genetic Variation/genetics , Haplotypes/genetics , Phylogeny , Africa , Asia , Emigration and Immigration , Europe , Humans , Indians, North American/genetics , Polymorphism, Genetic/genetics , Regulatory Sequences, Nucleic Acid/genetics
13.
J Mol Cell Cardiol ; 35(6): 623-36, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12788380

ABSTRACT

Mutations causing familial hypertrophic cardiomyopathy (HCM) have been described in at least 11 genes encoding cardiac sarcomeric proteins. In this study, three previously unknown deletions have been identified in the human cardiac genes coding for beta-myosin heavy chain (MYH7 on chromosome 14) and myosin-binding protein-C (MYBPC3 on chromosome 11). In family MM, a 3-bp deletion in MYH7 was detected to be associated with loss of glutamic acid in position 927 (DeltaE927) of the myosin rod. In two other families (HH and NP, related by a common founder) a 2-bp loss in codon 453 (exon 16) of MYBPC3 was identified as the presumable cause of a translation reading frame shift. Taken together 15 living mutation carriers were investigated. Six deceased family members (with five cases of premature sudden cardiac death (SCD) in families MM and NP) were either obligate or suspected mutation carriers. In addition to these mutations a 25-bp deletion in intron 32 of MYBPC3 was identified in family MM (five carriers) and in a fourth family (MiR, one HCM patient, three deletion carriers). In agreement with the loss of the regular splicing branch point in the altered intron 32, a splicing deficiency was observed in an exon trapping experiment using MYBPC3 exon 33 as a test substrate. Varying disease profiles assessed using standard clinical, ECG and echocardiographic procedures in conjunction with mutation analysis led to the following conclusions: (1) In family MM the DeltaE927 deletion in MYH7 was assumed to be associated with complete penetrance. Two cases of reported SCD might have been related to this mutation. (2) The two families, HH and NP, distantly related by a common founder, and both suffering from a 2-bp deletion in exon 16 of MYBPC3 differed in their average phenotypes. In family NP, four cases of cardiac death were documented, whereas no cardiac-related death was reported from family HH. These results support the notion that mutations in HCM genes may directly determine disease penetrance and severity; however, a contribution of additional, unidentified factors (genes) to the HCM phenotype can-at least in some cases-not be excluded. (3) The deletion in intron 32 of MYBPC3 was seen in two families, but in both its relation to disease was not unequivocal. In addition, this deletion was observed in 16 of 229 unrelated healthy individuals of the population of the South Indian states of Kerala and Tamil Nadu. It was not seen in 270 Caucasians from Russia and western Europe. Hence, it is considered to represent a regional genetic polymorphism restricted to southern India. The association of the deletion with altered splicing in transfected cells suggests that this deletion may create a "modifying gene", which is per se not or only rarely causing HCM, but which may enhance the phenotype of a mutation responsible for disease.


Subject(s)
Cardiomyopathy, Hypertrophic, Familial/genetics , Carrier Proteins/genetics , Gene Deletion , Ventricular Myosins/genetics , Adolescent , Adult , Animals , Child , DNA Mutational Analysis , Echocardiography , Exons , Family Health , Female , Heterozygote , Humans , India , Introns , Male , Middle Aged , Mutation , Pedigree , Phenotype , Polymorphism, Genetic , RNA Splicing
SELECTION OF CITATIONS
SEARCH DETAIL
...