Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
2.
Oncotarget ; 14: 972-976, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38085132

ABSTRACT

The history of studies of melatonin effects on cancer in mice is outlined, the main lesson being that the systemic in vivo effects of melatonin on animals may overwhelm the in vitro effects found using tissue explants or cell cultures. In particular, the timing of melatonin administration is of crucial importance for using the drug, which is freely available over counter and thus needs no licensing for its applications in oncology.


Subject(s)
Melatonin , Neoplasms , Mice , Animals , Melatonin/pharmacology , Anniversaries and Special Events , Neoplasms/drug therapy , Carcinogenesis
3.
Metab Eng ; 69: 302-312, 2022 01.
Article in English | MEDLINE | ID: mdl-34958914

ABSTRACT

Spontaneous reactions between metabolites are often neglected in favor of emphasizing enzyme-catalyzed chemistry because spontaneous reaction rates are assumed to be insignificant under physiological conditions. However, synthetic biology and engineering efforts can raise natural metabolites' levels or introduce unnatural ones, so that previously innocuous or nonexistent spontaneous reactions become an issue. Problems arise when spontaneous reaction rates exceed the capacity of a platform organism to dispose of toxic or chemically active reaction products. While various reliable sources list competing or toxic enzymatic pathways' side-reactions, no corresponding compilation of spontaneous side-reactions exists, nor is it possible to predict their occurrence. We addressed this deficiency by creating the Chemical Damage (CD)-MINE resource. First, we used literature data to construct a comprehensive database of metabolite reactions that occur spontaneously in physiological conditions. We then leveraged this data to construct 148 reaction rules describing the known spontaneous chemistry in a substrate-generic way. We applied these rules to all compounds in the ModelSEED database, predicting 180,891 spontaneous reactions. The resulting (CD)-MINE is available at https://minedatabase.mcs.anl.gov/cdmine/#/home and through developer tools. We also demonstrate how damage-prone intermediates and end products are widely distributed among metabolic pathways, and how predicting spontaneous chemical damage helps rationalize toxicity and carbon loss using examples from published pathways to commercial products. We explain how analyzing damage-prone areas in metabolism helps design effective engineering strategies. Finally, we use the CD-MINE toolset to predict the formation of the novel damage product N-carbamoyl proline, and present mass spectrometric evidence for its presence in Escherichia coli.


Subject(s)
Metabolic Networks and Pathways , Cell Cycle Proteins , Databases, Factual , Escherichia coli , Metabolic Networks and Pathways/genetics , Metabolome , Synthetic Biology
4.
Polymers (Basel) ; 13(10)2021 May 12.
Article in English | MEDLINE | ID: mdl-34066143

ABSTRACT

The study reports results of using a CO2-laser in continuous wave (3 W; 2 m/s) and quasi-pulsed (13.5 W; 1 m/s) modes to treat films prepared by solvent casting technique from four types of polyhydroxyalkanoates (PHAs), namely poly-3-hydroxybutyrate and three copolymers of 3-hydroxybutyrate: with 4-hydroxybutyrate, 3-hydroxyvalerate, and 3-hydroxyhexanoate (each second monomer constituting about 30 mol.%). The PHAs differed in their thermal and molecular weight properties and degree of crystallinity. Pristine films differed in porosity, hydrophilicity, and roughness parameters. The two modes of laser treatment altered these parameters and biocompatibility in diverse ways. Films of P(3HB) had water contact angle and surface energy of 92° and 30.8 mN/m, respectively, and average roughness of 144 nm. The water contact angle of copolymer films decreased to 80-56° and surface energy and roughness increased to 41-57 mN/m and 172-290 nm, respectively. Treatment in either mode resulted in different modifications of the films, depending on their composition and irradiation mode. Laser-treated P(3HB) films exhibited a decrease in water contact angle, which was more considerable after the treatment in the quasi-pulsed mode. Roughness parameters were changed by the treatment in both modes. Continuous wave line-by-line irradiation caused formation of sintered grooves on the film surface, which exhibited some change in water contact angle (76-80°) and reduced roughness parameters (to 40-45 mN/m) for most films. Treatment in the quasi-pulsed raster mode resulted in the formation of pits with no pronounced sintered regions on the film surface, a more considerably decreased water contact angle (to 67-76°), and increased roughness of most specimens. Colorimetric assay for assessing cell metabolic activity (MTT) in NIH 3T3 mouse fibroblast culture showed that the number of fibroblasts on the films treated in the continuous wave mode was somewhat lower; treatment in quasi-pulsed radiation mode caused an increase in the number of viable cells by a factor of 1.26 to 1.76, depending on PHA composition. This is an important result, offering an opportunity of targeted surface modification of PHA products aimed at preventing or facilitating cell attachment.

5.
Chemotherapy ; 65(1-2): 42-50, 2020.
Article in English | MEDLINE | ID: mdl-32772021

ABSTRACT

INTRODUCTION: The effects of chemotherapy are known to depend on the time of administration. Circadian rhythms are disturbed in tumors and in tumor bearers. Agents involved in controlling the circadian rhythms (chronobiotics) potentially can modify the outcomes of chemotherapeutics administered at different times of the day. Pineal hormone melatonin (MT) is a prototypic chronobiotic. OBJECTIVE: The aim of the study was to investigate if MT can affect efficacy or toxicity of chemotherapy drugs administered at the extreme time points of the working day of hospital personnel. METHODS: Cyclophosphamide, adriamycin, and 5-fluorouracil (CAF) and adriamycin and docetaxel (AT) cytotoxic drug combinations were administered on day 0 at 11:00 a.m. or at 5:00 p.m. (UTC+03:00) to 6-month-old female HER2/neu transgenic FVB/N mice bearing mammary adenocarcinomas. Some mice were additionally provided with MT in drinking water (20 mg/L) at night 1 week before or 3 weeks after treatment or during both periods. Tumor node sizes, body weight, and blood cell counts were determined right before treatment and on days 2, 7, 14, and 21. RESULTS: Significant decrease in the mean tumor node volume was found by days 14 and 21 upon all CAF and AT treatment schedules, except in animals treated with AT at 5:00 p.m. without supplementation with MT. In the latter case, mean tumor node volume on day 21 was the same as in the control. Supplementation of AT administered at 5:00 p.m. with MT improved the tumor response. CAF and AT regimens supplemented with MT also augmented the number of tumor nodes that did not increase by more than 20% by day 21 as compared to CAF or AT alone, respectively. This effect was significant in groups treated with AT at 5:00 p.m. and consistent upon other schedules. On day 7, leukopenia and anemia were registered in groups treated with CAF regimen; however, blood cell counts normalized by day 14. Both CAF and AT were associated with drop in the body weight registered on day 7. Supplementation with MT did not affect changes of the body weight and blood counts. CONCLUSIONS: MT supplementation to cytotoxic drugs can improve antitumor response, especially if it is blunted because of an inappropriate time of administration.


Subject(s)
Antineoplastic Agents/therapeutic use , Leukopenia/etiology , Melatonin/administration & dosage , Receptor, ErbB-2/metabolism , Anemia/etiology , Animals , Antineoplastic Agents/adverse effects , Blood Cell Count , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cyclophosphamide/adverse effects , Cyclophosphamide/therapeutic use , Disease Models, Animal , Docetaxel/adverse effects , Docetaxel/therapeutic use , Doxorubicin/adverse effects , Doxorubicin/therapeutic use , Drug Therapy, Combination , Female , Fluorouracil/adverse effects , Fluorouracil/therapeutic use , Mice , Mice, Transgenic
6.
Oncotarget ; 10(63): 6758-6767, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31827719

ABSTRACT

Aging can increase cancer incidence because of accumulated mutations that initiate cancer and via compromised body control of premalignant lesions development into cancer. Relative contributions of these two factors are debated. Recent evidence suggests that the latter is rate limiting. In particular, hyperglycemia caused by compromised body control of blood glucose may be a factor of selection of somatic mutation-bearing cells for the ability to use glucose for proliferation. High glucose utilization in aerobic glycolysis is a long known characteristic of cancer. The new evidence adds to the concepts that have been being developed starting from mid-1970ies to suggest that age-related shifts in glucose and lipid metabolism increase the risk of cancer and compromise prognoses for cancer patients and to propose antidiabetic biguanides, including metformin, for cancer prevention and as an adjuvant means of cancer treatment aimed at the metabolic rehabilitation of patients. The new evidence is consistent with several effects of glucose contributing to aging and acting synergistically to enhance carcinogenesis. Glucose can affect (i) separate cells (via promoting somatic mutagenesis and epigenetic instability), (ii) cell populations (via being a factor of selection of phenotypic variants in cell populations for higher glucose consumption and, ultimately, for high aerobic glycolysis); (iii) cell microenvironment (via modification of extracellular matrix proteins), and (iv) the systemic levels (via shifting the endocrine regulation of metabolism toward increasing blood lipids and body fat, which compromise immunological surveillance and promote inflammation). Thus, maintenance of youthful metabolic characteristics must be important for cancer prevention and treatment.

7.
Aging (Albany NY) ; 11(7): 2098-2110, 2019 04 13.
Article in English | MEDLINE | ID: mdl-30981207

ABSTRACT

IGF1 signaling is supposedly a key lifespan determinant in metazoans. However, controversial lifespan data were obtained with different means used to modify IGF1 or its receptor (IGF1R) expression in mice. The emerging puzzle lacks pieces of evidence needed to construct a coherent picture. We add to the available evidence by using the Gompertz model (GM), with account for the artifactual component of the Strehler-Mildvan correlation between its parameters, to compare the survival patterns of female FVB/N and FVB/N-derived K14/mIGF1 mice. In K14/mIGF1 vs. FVB/N mice, the rate of aging (γ) is markedly increased without concomitant changes in the initial mortality (µ0). In published cases where IGF1 signaling was altered by modifying liver or muscle IGF1 or whole body IGF1R expression, lifespan changes are attributable to µ0. The accelerated aging and associated tumor yield in K14/mIGF1 mice are consistent with the finding that the age-associated decreases in thymus weight and serum thymulin are accelerated in K14/mIGF1 mice. Our results underscore the importance of accounting for the mathematical artifacts of data fitting to GM in attempts to resolve discrepancies in survival data and to differentiate the contributions of the initial mortality and the rate of aging to changes in lifespan.


Subject(s)
Aging/genetics , Aging/physiology , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/physiology , Longevity/genetics , Longevity/physiology , Thymus Gland/pathology , Aging/pathology , Animals , Female , Keratin-14/genetics , Mice , Mice, Transgenic , Promoter Regions, Genetic , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/physiology , Signal Transduction , Thymic Factor, Circulating/metabolism
8.
Biogerontology ; 19(5): 341-365, 2018 10.
Article in English | MEDLINE | ID: mdl-29869230

ABSTRACT

Parametric models for survival data help to differentiate aging from other lifespan determinants. However, such inferences suffer from small sizes of experimental animal samples and variable animals handling by different labs. We analyzed control data from a single laboratory where interventions in murine lifespan were studied over decades. The minimal Gompertz model (GM) was found to perform best with most murine strains. However, when several control datasets related to a particular strain are fitted to GM, strikingly rigid interdependencies between GM parameters emerge, consistent with the Strehler-Mildvan correlation (SMC). SMC emerges even when survival patterns do not conform to GM, as with cancer-prone HER2/neu mice, which die at a log-normally distributed age. Numerical experiments show that SMC includes an artifact whose magnitude depends on dataset deviation from conformance to GM irrespectively of the noisiness of small datasets, another contributor to SMC. Still another contributor to SMC is the compensation effect of mortality (CEM): a real tradeoff between the physiological factors responsible for initial vitality and the rate of its decline. To avoid misinterpretations, we advise checking experimental results against a SMC based on historical controls or on subgroups obtained by randomization of control animals. An apparent acceleration of aging associated with a decrease in the initial mortality is invalid if it is not greater than SMC suggests. This approach applied to published data suggests that the effects of calorie restriction and of drugs believed to mimic it are different. SMC and CEM relevance to human survival patterns is discussed.


Subject(s)
Aging , Animal Experimentation/statistics & numerical data , Longevity , Models, Statistical , Animals , Control Groups , Humans , Life Expectancy , Mortality , Murinae , Survival
9.
Antioxid Redox Signal ; 29(10): 1003-1017, 2018 10 01.
Article in English | MEDLINE | ID: mdl-28874059

ABSTRACT

SIGNIFICANCE: The two foremost concepts of aging are the mechanistic free radical theory (FRT) of how we age and the evolutionary antagonistic pleiotropy theory (APT) of why we age. Both date from the late 1950s. The FRT holds that reactive oxygen species (ROS) are the principal contributors to the lifelong cumulative damage suffered by cells, whereas the APT is generally understood as positing that genes that are good for young organisms can take over a population even if they are bad for the old organisms. Recent Advances: Here, we provide a common ground for the two theories by showing how aging can result from the inherent chemical reactivity of many biomolecules, not just ROS, which imposes a fundamental constraint on biological evolution. Chemically reactive metabolites spontaneously modify slowly renewable macromolecules in a continuous way over time; the resulting buildup of damage wrought by the genes coding for enzymes that generate such small molecules eventually masquerades as late-acting pleiotropic effects. In aerobic organisms, ROS are major agents of this damage but they are far from alone. CRITICAL ISSUES: Being related to two sides of the same phenomenon, these theories should be compatible. However, the interface between them is obscured by the FRT mistaking a subset of damaging processes for the whole, and the APT mistaking a cumulative quantitative process for a qualitative switch. FUTURE DIRECTIONS: The manifestations of ROS-mediated cumulative chemical damage at the population level may include the often-observed negative correlation between fitness and the rate of its decline with increasing age, further linking FRT and APT. Antioxid. Redox Signal. 29, 1003-1017.


Subject(s)
Aging/metabolism , Free Radicals/metabolism , Aging/genetics , Animals , Genetic Pleiotropy/genetics , Humans , Reactive Oxygen Species/metabolism
10.
J Biol Chem ; 292(15): 6029-6038, 2017 04 14.
Article in English | MEDLINE | ID: mdl-28264930

ABSTRACT

The chemical potentialities of metabolites far exceed metabolic requirements. The required potentialities are realized mostly through enzymatic catalysis. The rest are realized spontaneously through organic reactions that (i) occur wherever appropriate reactants come together, (ii) are so typical that many have proper names (e.g. Michael addition, Amadori rearrangement, and Pictet-Spengler reaction), and (iii) often have damaging consequences. There are many more causes of non-enzymatic damage to metabolites than reactive oxygen species and free radical processes (the "usual suspects"). Endogenous damage accumulation in non-renewable macromolecules and spontaneously polymerized material is sufficient to account for aging and differentiates aging from wear-and-tear of inanimate objects by deriving it from metabolism, the essential attribute of life.


Subject(s)
Aging/metabolism , Reactive Oxygen Species/metabolism , Animals , Humans , Oxidation-Reduction
11.
Bioessays ; 34(4): 311-9, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22323313

ABSTRACT

Cell interdivision periods (IDP) in homogenous cell populations vary stochastically. Another aspect of probabilistic cell behavior is randomness in cell differentiation. These features are suggested to result from competing stochastic events of assembly/disassembly of the transcription pre-initiation complex (PIC) at gene promoters. The time needed to assemble a proper PIC from different proteins, which must be numerous enough to make their combination gene specific, may be comparable to the IDP. Nascent mRNA visualization at defined genes and inferences from protein level fluctuations in single cells suggest that some genes do operate in this way. The onset of mRNA production by such genes may miss the time windows provided by the cell cycle, resulting in cells differentiating into those in which the respective mRNAs are either present or absent. This creates a way to generate cell phenotype diversity in multicellular organisms.


Subject(s)
Cell Cycle/genetics , Gene Expression/genetics , Animals , Cell Cycle/physiology , Cell Differentiation/genetics , Cell Differentiation/physiology , Embryonic Development/genetics , Embryonic Development/physiology , Humans , Stem Cells/cytology , Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...