Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 12(7)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37508386

ABSTRACT

Rett syndrome (RTT) is a genetic neurodevelopmental disorder with mutations in the X-chromosomal MECP2 (methyl-CpG-binding protein 2) gene. Most patients are young girls. For 7-18 months after birth, they hardly present any symptoms; later they develop mental problems, a lack of communication, irregular sleep and breathing, motor dysfunction, hand stereotypies, and seizures. The complex pathology involves mitochondrial structure and function. Mecp2-/y hippocampal astrocytes show increased mitochondrial contents. Neurons and glia suffer from oxidative stress, a lack of ATP, and increased hypoxia vulnerability. This spectrum of changes demands comprehensive molecular studies of mitochondria to further define their pathogenic role in RTT. Therefore, we applied a comparative proteomic approach for the first time to study the entity of mitochondrial proteins in a mouse model of RTT. In the neocortex and hippocampus of symptomatic male mice, two-dimensional gel electrophoresis and subsequent mass-spectrometry identified various differentially expressed mitochondrial proteins, including components of respiratory chain complexes I and III and the ATP-synthase FoF1 complex. The NADH-ubiquinone oxidoreductase 75 kDa subunit, NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, NADH dehydrogenase [ubiquinone] flavoprotein 2, cytochrome b-c1 complex subunit 1, and ATP synthase subunit d are upregulated either in the hippocampus alone or both the hippocampus and neocortex of Mecp2-/y mice. Furthermore, the regulatory mitochondrial proteins mitofusin-1, HSP60, and 14-3-3 protein theta are decreased in the Mecp2-/y neocortex. The expressional changes identified provide further details of the altered mitochondrial function and morphology in RTT. They emphasize brain-region-specific alterations of the mitochondrial proteome and support the notion of a metabolic component of this devastating disorder.

2.
Arch Biochem Biophys ; 732: 109467, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36435647

ABSTRACT

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor-in-Chief and Authors. Professor Michael Müller approached the journal explaining that he had encountered an issue in the way the spectrofluorometric data analyses was performed. The normalization of the fluorescence curves to their respective starting points (as explained in Figure 1A) overestimated the changes in Mecp2-mutant mice, which usually started at lower levels. This overestimation applies to Figure 3 A-D as well as Table 2 and Table 3 and altered the outcomes of the study. Both the EiC and the authors agreed that a corrigendum would not be appropriate due to the change in conclusion and that the paper should therefore be retracted. The authors apologise for any confusion this paper may have resulted in.

3.
Cells ; 10(9)2021 09 21.
Article in English | MEDLINE | ID: mdl-34572143

ABSTRACT

Using unsupervised metabolomics, we defined the complex metabolic conditions in the cortex of a mouse model of Rett syndrome (RTT). RTT, which represents a cause of mental and cognitive disabilities in females, results in profound cognitive impairment with autistic features, motor disabilities, seizures, gastrointestinal problems, and cardiorespiratory irregularities. Typical RTT originates from mutations in the X-chromosomal methyl-CpG-binding-protein-2 (Mecp2) gene, which encodes a transcriptional modulator. It then causes a deregulation of several target genes and metabolic alterations in the nervous system and peripheral organs. We identified 101 significantly deregulated metabolites in the Mecp2-deficient cortex of adult male mice; 68 were increased and 33 were decreased compared to wildtypes. Pathway analysis identified 31 mostly upregulated metabolic pathways, in particular carbohydrate and amino acid metabolism, key metabolic mitochondrial/extramitochondrial pathways, and lipid metabolism. In contrast, neurotransmitter-signaling is dampened. This metabolic fingerprint of the Mecp2-deficient cortex of severely symptomatic mice provides further mechanistic insights into the complex RTT pathogenesis. The deregulated pathways that were identified-in particular the markedly affected amino acid and carbohydrate metabolism-confirm a complex and multifaceted metabolic component in RTT, which in turn signifies putative therapeutic targets. Furthermore, the deregulated key metabolites provide a choice of potential biomarkers for a more detailed rating of disease severity and disease progression.


Subject(s)
Methyl-CpG-Binding Protein 2/metabolism , Rett Syndrome/metabolism , Animals , Brain/metabolism , Cerebral Cortex/physiology , Disease Models, Animal , Disease Progression , Male , Metabolomics/methods , Methyl-CpG-Binding Protein 2/genetics , Mice , Mitochondria/metabolism , Mutation , Phenotype , Rett Syndrome/genetics
4.
Arch Biochem Biophys ; 696: 108666, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33160914

ABSTRACT

This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief and Authors. Professor Michael Müller approached the journal explaining that he had encountered an issue in the way the spectrofluorometric data analyses was performed. The normalization of the fluorescence curves to their respective starting points (as explained in Figure 1A) overestimated the changes in Mecp2-mutant mice, which usually started at lower levels. This overestimation applies to Figure 3 A-D as well as Table 2 and Table 3 and altered the outcomes of the study. Both the EiC and the authors agreed that a corrigendum would not be appropriate due to the change in conclusion and that the paper should therefore be retracted. The authors apologise for any confusion this paper may have resulted in.


Subject(s)
Brain/metabolism , Hydrogen Peroxide/metabolism , Mitochondria/metabolism , Rett Syndrome/metabolism , Animals , Female , Longevity/physiology , Male , Mice , Oxidative Stress/physiology
5.
Front Physiol ; 10: 479, 2019.
Article in English | MEDLINE | ID: mdl-31114506

ABSTRACT

Rett syndrome (RTT), an X chromosome-linked neurodevelopmental disorder affecting almost exclusively females, is associated with various mitochondrial alterations. Mitochondria are swollen, show altered respiratory rates, and their inner membrane is leaking protons. To advance the understanding of these disturbances and clarify their link to redox impairment and oxidative stress, we assessed mitochondrial respiration in defined brain regions and cardiac tissue of male wildtype (WT) and MeCP2-deficient (Mecp2-/y ) mice. Also, we quantified for the first time neuronal redox-balance with subcellular resolution in cytosol and mitochondrial matrix. Quantitative roGFP1 redox imaging revealed more oxidized conditions in the cytosol of Mecp2-/y hippocampal neurons than in WT neurons. Furthermore, cytosol and mitochondria of Mecp2-/y neurons showed exaggerated redox-responses to hypoxia and cell-endogenous reactive oxygen species (ROS) formation. Biochemical analyzes exclude disease-related increases in mitochondrial mass in Mecp2-/y hippocampus and cortex. Protein levels of complex I core constituents were slightly lower in Mecp2-/y hippocampus and cortex than in WT; those of complex V were lower in Mecp2-/y cortex. Respiratory supercomplex-formation did not differ among genotypes. Yet, supplied with the complex II substrate succinate, mitochondria of Mecp2-/y cortex and hippocampus consumed more O2 than WT. Furthermore, mitochondria from Mecp2-/y hippocampus and cortex mediated an enhanced oxidative burden. In conclusion, we further advanced the molecular understanding of mitochondrial dysfunction in RTT. Intensified mitochondrial O2 consumption, increased mitochondrial ROS generation and disturbed redox balance in mitochondria and cytosol may represent a causal chain, which provokes dysregulated proteins, oxidative tissue damage, and contributes to neuronal network dysfunction in RTT.

SELECTION OF CITATIONS
SEARCH DETAIL
...