Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genetics ; 153(2): 933-41, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10511568

ABSTRACT

In angiosperm ovules and anthers, the hypodermal cell layer provides the progenitors of meiocytes. We have previously reported that the multiple archesporial cells1 (mac1) mutation identifies a gene that plays an important role in the switch of the hypodermal cells from the vegetative pathway to the meiotic (sporogenous) pathway in maize ovules. Here we report that the mac1 mutation alters the developmental fate of the hypodermal cells of the maize anther. In a normal anther a hypodermal cell divides periclinally with the inner cell giving rise to the sporogenous archesporial cells while the outer cell, together with adjacent cells, forms the primary parietal layer. The cells of the parietal layer then undergo two cycles of periclinal divisions to give rise to three wall layers. In mac1 anthers the primary parietal layer usually fails to divide periclinally so that the three wall layers do not form, while the archesporial cells divide excessively and most fail to form microsporocytes. The centrally located mutant microsporocytes are abnormal in appearance and in callose distribution and they fail to proceed through meiosis. These failures in development and function appear to reflect the failure of mac1 gene function in the hypodermal cells and their cellular progeny.


Subject(s)
Genes, Plant , Zea mays/growth & development , Zea mays/genetics , Heterozygote , Mutation , Reproduction , Seeds/physiology , Zea mays/cytology
2.
Genetics ; 142(3): 1009-20, 1996 Mar.
Article in English | MEDLINE | ID: mdl-8849906

ABSTRACT

The switch from the vegetative to the reproductive pathway of development in flowering plants requires the commitment of the subepidermal cells of the ovules and anthers to enter the meiotic pathway. These cells, the hypodermal cells, either directly or indirectly form the archesporial cells that, in turn, differentiate into the megasporocytes and microsporocytes. We have isolated a recessive pleiotropic mutation that we have termed multiple archesporial cells1 (mac1) and located it to the short arm of chromosome 10. Its cytological phenotype suggests that this locus plays an important role in the switch of the hypodermal cells from the vegetative to the meiotic (sporogenous) pathway in maize ovules. During normal ovule development in maize, only a single hypodermal cell develops into an archesporial cell and this differentiates into the single megasporocyte. In mac1 mutant ovules several hypodermal cells develop into archesporial cells, and the resulting megasporocytes undergo a normal meiosis. More than one megaspore survives in the tetrad and more than one embryo sac is formed in each ovule. Ears on mutant plants show partial sterility resulting from abnormalities in megaspore differentiation and embryo sac formation. The sporophytic expression of this gene is therefore also important for normal female gametophyte development.


Subject(s)
Genes, Plant , Meiosis/physiology , Zea mays/genetics , Chromosome Mapping , Chromosomes , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...