Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Mater ; 19(3)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38626774

ABSTRACT

Bioinks play a crucial role in tissue engineering, influencing mechanical and chemical properties of the printed scaffold as well as the behavior of encapsulated cells. Recently, there has been a shift from animal origin materials to their synthetic alternatives. In this context, we present here bioinks based on fully synthetic and biodegradable poly(α,L-amino acids) (PolyAA) as an alternative to animal-based gelatin methacrylate (Gel-Ma) bioinks. Additionally, we first reported the possibility of the visible light photoinitiated incorporation of the bifunctional cell adhesive RGD peptide into the PolyAA hydrogel matrix. The obtained hydrogels are shown to be cytocompatible, and their mechanical properties closely resemble those of gelatin methacrylate-based scaffolds. Moreover, combining the unique properties of PolyAA-based bioinks, the photocrosslinking strategy, and the use of droplet-based printing allows the printing of constructs with high shape fidelity and structural integrity from low-viscosity bioinks without using any sacrificial components. Overall, presented PolyAA-based materials are a promising and versatile toolbox that extends the range of bioinks for droplet bioprinting.


Subject(s)
Amino Acids , Biocompatible Materials , Gelatin , Hydrogels , Light , Tissue Engineering , Tissue Scaffolds , Hydrogels/chemistry , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Gelatin/chemistry , Amino Acids/chemistry , Biocompatible Materials/chemistry , Animals , Bioprinting/methods , Oligopeptides/chemistry , Ink , Methacrylates/chemistry , Humans , Printing, Three-Dimensional , Materials Testing , Mice , Viscosity
2.
Int J Mol Sci ; 22(11)2021 May 27.
Article in English | MEDLINE | ID: mdl-34072085

ABSTRACT

In the fast-developing field of tissue engineering there is a constant demand for new materials as scaffolds for cell seeding, which can better mimic a natural extracellular matrix as well as control cell behavior. Among other materials, polysaccharides are widely used for this purpose. One of the main candidates for scaffold fabrication is alginate. However, it lacks sites for cell adhesion. That is why one of the steps toward the development of suitable scaffolds for cells is the introduction of the biofunctionality to the alginate structure. In this work we focused on bone-sialoprotein derived peptide (TYRAY) conjugation to the molecule of alginate. Here the comparison study on four different approaches of peptide conjugation was performed including traditional and novel modification methods, based on 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxy succinimide (EDC/NHS), 4-(4,6-dimethoxy-1,3,5-triazine-2-yl)-4-methylmorpholinium chloride (DMTMM), thiol-Michael addition and Cu-catalyzed azide-alkyne cycloaddition reactions. It was shown that the combination of the alginate amidation with the use of and subsequent Cu-catalyzed azide-alkyne cycloaddition led to efficient peptide conjugation, which was proven with both NMR and XPS methods. Moreover, the cell culture experiment proved the positive effect of peptide presence on the adhesion of human embryonic stem cells.


Subject(s)
Alginates/chemistry , Biomimetics , Peptides/chemistry , Tissue Engineering , Tissue Scaffolds , Amines/chemistry , Biomimetics/methods , Cell Adhesion , Cell Culture Techniques , Cell Line , Cell Survival/drug effects , Click Chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Peptides/pharmacology , Tissue Engineering/methods
3.
Mater Sci Eng C Mater Biol Appl ; 75: 1075-1082, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28415392

ABSTRACT

Poly(vinyl alcohol) (PVA) hydrogels are widely employed for various biomedical applications, including tissue engineering, due to their biocompatibility, high water solubility, low protein adsorption, and chemical stability. However, non-charged surface of PVA-based hydrogels is not optimal for cell adhesion and spreading. Here, cross-linked macroporous hydrogels based on low molecular weight acrylated PVA (Acr-PVA) was synthesized by modification of the pendant alcohol groups on the PVA with glycidyl methacrylate (GMA). To enhance cell affinity, charged groups were introduced to the hydrogel composition. For this purpose, Acr-PVA was copolymerized with either negatively charged acrylic acid (AA) or positively charged 2-(diethylamino) ethyl methacrylate (DEAEMA) monomers. A surface charge of the obtained hydrogels was found to be in function of the co-monomer type and content. Confocal microscopy observations confirmed that adhesion and spreading of both mouse fibroblasts (L929) and human mesenchymal stem cells (hMSC) on the modified Acr-PVA-AA and Acr-PVA-DEAEMA hydrogels were better than those on the non-modified Acr-PVA hydrogel. The increase of DEAEMA monomer content from 5 to 15mol% resulted in the enhancement of cell viability which was 1.5-fold higher for Acr-PVA-DEAEMA-15 hydrogel than that of the non-modified Acr-PVA hydrogel sample.


Subject(s)
Fibroblasts/metabolism , Hydrogels/chemistry , Mesenchymal Stem Cells/metabolism , Polyvinyl Alcohol/chemistry , Tissue Engineering , Animals , Cell Adhesion , Cell Line , Epoxy Compounds/chemistry , Fibroblasts/cytology , Humans , Mesenchymal Stem Cells/cytology , Methacrylates/chemistry , Mice , Porosity
4.
Biomacromolecules ; 16(4): 1146-56, 2015 Apr 13.
Article in English | MEDLINE | ID: mdl-25728457

ABSTRACT

The ability to tailor mechanical properties and architecture is crucial in creating macroporous hydrogel scaffolds for tissue engineering. In the present work, a technique for the modification of the pore size and stiffness of acrylamide-based cryogels is demonstrated via the regulation of an electron beam irradiation dose. The samples were characterized by equilibrium swelling measurements, light and scanning electron microscopy, mercury porosimetry, Brunauer-Emmett-Teller surface area analysis, and stiffness measurements. Their properties were compared to cryogels prepared by a standard redox-initiated radical polymerization. A (125)I radiolabeled azidopentanoyl-GGGRGDSGGGY-NH2 peptide was bound to the surface to determine the concentration of the adhesive sites available for biomimetic modification. The functionality of the prepared substrates was evaluated by in vitro cultivation of adipose-derived stem cells. Moreover, the feasibility of preparing layered cryogels was demonstrated. This may be the key to the future preparation of complex hydrogel-based scaffolds to mimic the extracellular microenvironment in a wide range of applications.


Subject(s)
Cryogels/chemical synthesis , Polymerization , Porosity , Adipocytes/drug effects , Cryogels/pharmacology , Electrons , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...