Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39031912

ABSTRACT

Low-loading Pd supported on Fe2O3 nanoparticles was synthesized. A common nanocatalyst system with previously reported synergistic enhancement of reactivity that is attributed to the electronic interactions between Pd and the Fe2O3 support. Fe2O3-selective precoalescence overcoating with ZnO atomic layer deposition (ALD), using Zn(CH2CH3)2 and H2O as precursors, dampens competitive hydrogenation reactivity at Fe2O3-based sites. The result is enhanced efficiency at the low-loading but high reactivity Pd sites. While this increases catalyst efficiency toward most aqueous redox reactions tested, it suppresses reactivity toward polyaromatic core substrates. X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) show minimal electronic impacts for the ZnO overcoat on the Pd particles, implying a predominantly physical site blocking effect as the reason for the modified reactivity. This serves as a proof-of-concept of not only stabilizing supported nanocatalysts but also altering reactivity with ultrathin ALD overcoats. The results point to a facile ALD route for selective enhancement of reactivity for low-loading Pd-based supported nanocatalysts.

2.
Langmuir ; 39(26): 9154-9161, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37326507

ABSTRACT

The interaction of hydrogen-terminated silicon nanoparticles (H-SiNPs) with Karstedt's catalyst at various temperatures was investigated. The results indicate that at room temperature, the oxidative addition of Pt(0) onto H-SiNPs is irreversible, and the catalyst is not eliminated from the surface of H-SiNPs, enabling a facile synthesis of Pt-loaded SiNPs that can undergo ligand exchange. The nature of the Pt-on-Si ensemble is characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. Reaction conditions that enable effective hydrosilylation are discussed. It is found that higher temperatures favor reductive elimination of the catalyst and hydrosilylation of 1-octene onto the surface of the H-SiNPs.

3.
Langmuir ; 38(27): 8366-8373, 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35686698

ABSTRACT

Hydrogen-terminated silicon nanoparticles (H-SiNPs) inhibit anerobic thermal autopolymerization of methacrylates. When heated to 100 °C under an inert atmosphere, allyl methacrylate (AMA) was stable for at least 95 h in the presence of 1.2 wt % H-SiNPs, exhibiting less than 0.15% conversion, whereas the neat monomer solidified within 24 h (over 10% conversion after 34 h). A mechanism is proposed that is based on H-transfer from SiNPs to the thermally activated methacrylic dimer biradical, quenching autopolymerization. An analysis of SiNPs isolated after heating in AMA reveals the grafting of ester groups. Thermal hydrosilylation offers a facile way to attach an allyl group to the surface of SiNPs.

4.
Micromachines (Basel) ; 12(5)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33919437

ABSTRACT

This review surveys advances in the fabrication of functional microdevices by multi-photon lithography (MPL) using the SU-8 material system. Microdevices created by MPL in SU-8 have been key to progress in the fields of micro-fluidics, micro-electromechanical systems (MEMS), micro-robotics, and photonics. The review discusses components, properties, and processing of SU-8 within the context of MPL. Emphasis is focused on advances within the last five years, but the discussion also includes relevant developments outside this period in MPL and the processing of SU-8. Novel methods for improving resolution of MPL using SU-8 and discussed, along with methods for functionalizing structures after fabrication.

SELECTION OF CITATIONS
SEARCH DETAIL
...