Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 129(16): 166802, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36306756

ABSTRACT

New spin-dependent photoemission properties of alkali antimonide semiconductor cathodes are predicted based on the detected optical spin orientation effect and DFT band structure calculations. Using these results, the Na_{2}KSb/Cs_{3}Sb heterostructure is designed as a spin-polarized electron source in combination with the Al_{0.11}Ga_{0.89}As target as a spin detector with spatial resolution. In the Na_{2}KSb/Cs_{3}Sb photocathode, spin-dependent photoemission properties were established through detection of a high degree of photoluminescence polarization and high polarization of the photoemitted electrons. It was found that the multi-alkali photocathode can provide electron beams with emittance very close to the limits imposed by the electron thermal energy. The vacuum tablet-type sources of spin-polarized electrons have been proposed for accelerators, which can exclude the construction of the photocathode growth chambers for photoinjectors.

2.
Ultramicroscopy ; 218: 113076, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32738565

ABSTRACT

The circularly polarized cathodoluminescence (CL) technique has been used to study the free spin-polarized electron injection in semiconductor heterostructures with quantum wells (QWs). A polarized electron beam was created by the emission of optically oriented electrons from the p-GaAs(Cs,O) negative electron affinity (NEA) photocathode. The prepared beam was injected in a semiconductor QW target, which was activated by cesium and oxygen to reduce the work function. To study the spin-dependent injection, we developed a spin-detector prototype, which consists of a compact proximity focused vacuum tube with the source and target placed parallel to each other on the opposite ends of the vacuum tube (photodiode). The injection of polarized low-energy electrons into the target by varying the kinetic energy in the range of 0.5-5.0 eV and temperature in the range of 90-300 K was studied. The CL was polarized to 2 % by the injection of 20 % spin-polarized electron beam with the energy of 0.5 eV at room temperature. The asymmetry (Sherman function) of spin detection was estimated. It was shown that the dependence of the CL polarization degree on the injected electron energy is satisfactory described by the model that considers the electron spin relaxation in the heterostructure matrix and QWs. The results demonstrate that semiconductor detectors are promising for the spin-polarimetry applications based on the optical detection of free-electron spin polarization.

3.
Nanotechnology ; 31(12): 125602, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-31778984

ABSTRACT

Thin Bi2Se3 flakes with few nanometer thicknesses and sized up to 350 µm were created by using electrochemical splitting from high-quality Bi2Se3 bulk monocrystals. The dependence of film resistance on the Bi2Se3 flake thickness demonstrates that, at room temperature, the bulk conductivity becomes negligible in comparison with the surface conductivity for films with thicknesses lower than 80 nm. Unexpectedly, all these films demonstrated p-type conductivity. The doping effect with sulfur or sulfur-related radicals during electrochemical exfoliation is suggested for the p-type conductivity of the exfoliated Bi2Se3 films. The formation of 2-8 nm films was predominantly found. Van der Waals (vdW) heterostructures of Bi2Se3/Graphene/SiO2/Si were created and their properties were compared with that of Bi2Se3 on the SiO2/Si substrate. The increase of the conductivity and carrier mobility in Bi2Se3 flakes of 3-5 times was found for vdW heterostructures with graphene. Thin Bi2Se3 films are potentially interesting for applications for spintronics, nano- and optoelectronics.

4.
Sci Rep ; 7(1): 16154, 2017 11 23.
Article in English | MEDLINE | ID: mdl-29170438

ABSTRACT

Multi-junction solar cells with multiple p-n junctions made of different semiconductor materials have multiple bandgaps that allow reducing the relaxation energy loss and substantially increase the power-conversion efficiency. The choice of materials for each sub-cell is very limited due to the difficulties in extracting the current between the layers caused by the requirements for lattice- and current-matching. We propose a new vacuum multi-junction solar cell with multiple p-n junctions separated by vacuum gaps that allow using different semiconductor materials as cathode and anode, both activated to the state of effective negative electron affinity (NEA). In this work, the compact proximity focused vacuum tube with the GaAs(Cs,O) photocathode and AlGaAs/GaAs-(Cs,O) anode with GaAs quantum wells (QWs) is used as a prototype of a vacuum single-junction solar cell. The photodiode with the p-AlGaAs/GaAs anode showed the spectral power-conversion efficiency of about 1% at V bias = 0 in transmission and reflection modes, while, at V bias = 0.5 V, the efficiency increased up to 10%. In terms of energy conservation, we found the condition at which the energy cathode-to-anode transition was close to 1. Considering only the energy conservation part, the NEA-cell power-conversion efficiency can rich a quantum yield value which is measured up to more than 50%.

5.
Sci Rep ; 7(1): 3353, 2017 06 13.
Article in English | MEDLINE | ID: mdl-28611416

ABSTRACT

One of the most promising platforms for spintronics and topological quantum computation is the two-dimensional electron gas (2DEG) with strong spin-orbit interaction and out-of-plane ferromagnetism. In proximity to an s-wave superconductor, such 2DEG may be driven into a topologically non-trivial superconducting phase, predicted to support zero-energy Majorana fermion modes. Using angle-resolved photoemission spectroscopy and ab initio calculations, we study the 2DEG at the surface of the vanadium-doped polar semiconductor with a giant Rashba-type splitting, BiTeI. We show that the vanadium-induced magnetization in the 2DEG breaks time-reversal symmetry, lifting Kramers degeneracy of the Rashba-split surface state at the Brillouin zone center via formation of a huge gap of about 90 meV. As a result, the constant energy contour inside the gap consists of only one circle with spin-momentum locking. These findings reveal a great potential of the magnetically-doped semiconductors with a giant Rashba-type splitting for realization of novel states of matter.

SELECTION OF CITATIONS
SEARCH DETAIL
...