Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chempluschem ; : e202400162, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38781084

ABSTRACT

The chemistry of transition-metal (TM) complexes with monoanionic bidentate (κ2-L,Si) silyl ligands has considerably grown in recent years. This work summarizes the advances in the chemistry of TM-(κ2-L,Si) complexes (L=N-heterocycle, phosphine, N-heterocyclic carbene, thioether, ester, silylether or tetrylene). The most common synthetic method has been the oxidative addition of the Si-H bond to the metal center assisted by the coordination of L. The metal silicon bond distances in TM-(κ2-L,Si) complexes are in the range of metal-silyl bond distances. TM-(κ2-L,Si) complexes have proven to be effective catalysts for hydrosilylation and/or hydrogenation of unsaturated molecules among other processes.

2.
Dalton Trans ; 52(32): 11361-11362, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37545463

ABSTRACT

Correction for 'Iridium-(κ2-NSi) catalyzed dehydrogenation of formic acid: effect of auxiliary ligands on the catalytic performance' by Alejandra Gomez-España et al., Dalton Trans., 2023, 52, 6722-6729, https://doi.org/10.1039/d3dt00744h.

3.
Dalton Trans ; 52(20): 6722-6729, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37129044

ABSTRACT

The iridium(III) complexes [Ir(H)(Cl)(κ2-NSitBu2)(κ2-bipyMe2)] (2) and [Ir(H)(OTf)(κ2-NSitBu2)(κ2-bipyMe2)] (3) (NSitBu2 = {4-methylpyridine-2-yloxy}ditertbutylsilyl) have been synthesized and characterized including X-ray studies of 3. A comparative study of the catalytic activity of complexes 2, 3, [Ir(H)(OTf)(κ2-NSitBu2)(coe)] (4), and [Ir(H)(OTf)(κ2-NSitBu2)(PCy3)] (5) (0.1 mol%) as catalysts precursors for the solventless formic acid dehydrogenation (FADH) in the presence of Et3N (40 mol%) at 353 K has been performed. The highest activity (TOF5 min ≈ 3260 h-1) has been obtained with 3 at 373 K. However, at that temperature the FTIR spectra show traces of CO together with the desired products (H2 and CO2). Thus, the best performance was achieved at 353 K (TOF5 min ≈ 1210 h-1 and no observable CO). Kinetic studies at variable temperature show that the activation energy of the 3-catalyzed FADH process is 16.76 kcal mol-1. Kinetic isotopic effect (5 min) values of 1.6, 4.5, and 4.2 were obtained for the 3-catalyzed dehydrogenation of HCOOD, DCOOH, and DCOOD, respectively, at 353 K. The strong KIE found for DCOOH and DCOOD evidenced that the hydride transfer from the C-H bond of formic acid to the metal is the rate-determining step of the process.

4.
Dalton Trans ; 52(21): 7353, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37212745

ABSTRACT

Correction for 'Iridium-(κ2-NSi) catalyzed dehydrogenation of formic acid: effect of auxiliary ligands on the catalytic performance' by Alejandra Gomez-España et al., Dalton Trans., 2023, https://doi.org/10.1039/d3dt00744h.

5.
Inorg Chem ; 61(41): 16282-16294, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36194856

ABSTRACT

The reaction of [IrH(Cl)(κ2-NSitBu2)(coe)] (1) with 1 equiv of PCy3 (or PHtBu2) gives the species [IrH(Cl)(κ2-NSitBu2)(L)] (L = PCy3, 2a; PHtBu2, 2b), which reacts with 1 equiv of AgOTf to afford [IrH(OTf)(κ2-NSitBu2)(L)] (L = PCy3, 3a and PHtBu2, 3b). Complexes 2a, 2b, 3a, and 3b have been characterized by means of NMR spectroscopy and HR-MS. The solid-state structures of complexes 2a, 2b, and 3a have been determined by X-ray diffraction studies. The reversible coordination of water to 3a, 3b, and 4 to afford the corresponding adduct [IrH(OTf)(κ2-NSitBu2)(L)(H2O)] (L = PCy3, 3a-H2O; PHtBu2, 3b-H2O; coe, 4-H2O) has been demonstrated spectroscopically by NMR studies. The structure of complexes 3b-H2O and 4-H2O have been determined by X-ray diffraction studies. Computational analyses of the interaction between neutral [NSitBu2]• and [Ir(H)L(X)]• fragments in Ir-NSitBu2 species confirm the electron-sharing nature of the Ir-Si bond and the significant role of electrostatics in the interaction between the transition metal fragment and the κ2-NSitBu2 ligand. The activity of Ir-(κ2-NSitBu2) species as catalysts for the hydrolysis of HSiMe(OSiMe3)2 depends on the nature of the ancillary ligands. Thus, while the triflate derivatives are active, the related chloride species show no activity. The best catalytic performance has been obtained when using complexes 3a, with triflate and PCy3 ligands, as a catalyst precursor, which allows the selective obtention of the corresponding silanol.

SELECTION OF CITATIONS
SEARCH DETAIL
...