Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Microbiol ; 24(1): 54, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341568

ABSTRACT

BACKGROUND: Candida albicans is the most common fungus that causes vaginal candidiasis in immunocompetent women and catastrophic infections in immunocompromised patients. The treatment of such infections is hindered due to the increasing emergence of resistance to azoles in C. albicans. New treatment approaches are needed to combat candidiasis especially in the dwindled supply of new effective and safe antifungals. The resistance to azoles is mainly attributed to export of azoles outside the cells by means of the efflux pump that confers cross resistance to all azoles including fluconazole (FLC). OBJECTIVES: This study aimed to investigate the possible efflux pump inhibiting activity of fusidic acid (FA) in C. albicans resistant isolates and the potential use of Fusidic acid in combination with fluconazole to potentiate the antifungal activity of fluconazole to restore its activity in the resistant C. albicans isolates. METHODS: The resistance of C. albicans isolates was assessed by determination of minimum inhibitory concentration. The effect of Fusidic acid at sub-inhibitory concentration on efflux activity was assayed by rhodamine 6G efflux assay and intracellular accumulation. Mice model studies were conducted to evaluate the anti-efflux activity of Fusidic acid and its synergistic effects in combination with fluconazole. Impact of Fusidic acid on ergosterol biosynthesis was quantified. The synergy of fluconazole when combined with Fusidic acid was investigated by determination of minimum inhibitory concentration. The cytotoxicity of Fusidic acid was tested against erythrocytes. The effect of Fusidic acid on efflux pumps was tested at the molecular level by real-time PCR and in silico study. In vivo vulvovaginitis mice model was used to confirm the activity of the combination in treating vulvovaginal candidiasis. RESULTS: Fusidic acid showed efflux inhibiting activity as it increased the accumulation of rhodamine 6G, a substrate for ABC-efflux transporter, and decreased its efflux in C. albicans cells. The antifungal activity of fluconazole was synergized when combined with Fusidic acid. Fusidic acid exerted only minimal cytotoxicity on human erythrocytes indicating its safety. The FA efflux inhibitory activity could be owed to its ability to interfere with efflux protein transporters as revealed by docking studies and downregulation of the efflux-encoding genes of both ABC transporters and MFS superfamily. Moreover, in vivo mice model showed that using fluconazole-fusidic acid combination by vaginal route enhanced fluconazole antifungal activity as shown by lowered fungal burden and a negligible histopathological change in vaginal tissue. CONCLUSION: The current findings highlight FA's potential as a potential adjuvant to FLC in the treatment of vulvovaginal candidiasis.


Subject(s)
Candidiasis, Vulvovaginal , Candidiasis , Humans , Female , Animals , Mice , Fluconazole/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Candidiasis, Vulvovaginal/drug therapy , Fusidic Acid/pharmacology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Drug Resistance, Fungal , Candida albicans , Candidiasis/drug therapy , Candidiasis/microbiology , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Azoles/pharmacology , Microbial Sensitivity Tests
2.
Res Microbiol ; 174(7): 104084, 2023.
Article in English | MEDLINE | ID: mdl-37247797

ABSTRACT

The high incidence of persistent multidrug resistant bacterial infections is a worldwide public health burden. Alternative strategies are required to deal with such issue including the use of drugs with anti-virulence activity. The application of nanotechnology to develop advanced Nano-materials that target quorum sensing regulated virulence factors is an attractive approach. Synthesis of ascorbic acid Nano-emulsion (ASC-NEs) and assessment of its activity in vitro against the virulence factors and its protective ability against pathogenesis as well as the effect against expression of quorum sensing genes of Pseudomonas aeruginosa and Staphylococcus aureus isolates. Ascorbic acid Nano-emulsion was characterized by DLS Zetasizer Technique, Zeta potential; Transmission Electron Microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR). The antibacterial activity of ASC-NEs was tested by the broth microdilution method and the activity of their sub-MIC against the expression of quorum sensing controlled virulence was investigated using phenotypic experiments and RT-PCR. The protective activity of ASC-NEs against P. aeruginosa as well as S. aureus pathogenesis was tested in vivo. Phenotypically, ASC-NEs had strong virulence inhibitory activity against the tested bacteria. The RT-PCR experiment showed that it exhibited significant QS inhibitory activity. The in vivo results showed that ASC-NEs protected against staphylococcal infection, however, it failed to protect mice against Pseudomonal infection. These results suggest the promising use of nanoformulations against virulence factors in multidrug resistant P. aeruginosa and S. aureus. However, further studies are required concerning the potential toxicity, clearance and phamacokinetics of the nanoformulations.

3.
World J Microbiol Biotechnol ; 38(7): 119, 2022 May 30.
Article in English | MEDLINE | ID: mdl-35644864

ABSTRACT

Long-term antibiotic treatment results in the spread of multi-drug resistance in Pseudomonas aeruginosa that complicates treatment. Anti-virulence agents can be viewed as alternative options that cripple virulence factors of the bacteria to facilitate their elimination by the host immunity. The use of nanoparticles in the inhibition of P. aeruginosa virulence factors is a promising strategy. This study aims to study the effect of metformin (MET), metformin nano emulsions (MET-NEs), silver metformin nano emulsions (Ag-MET-NEs) and silver nanoparticles (AgNPs) on P. aeruginosa virulence factors' expression. The phenotypic results showed that MET-NEs had the highest virulence inhibitory activity. However, concerning RT-PCR results, all tested agents significantly decreased the expression of quorum sensing regulatory genes of P. aeruginosa; lasR, lasI, pqsA, fliC, exoS and pslA, with Ag-MET-NEs being the most potent one, however, it failed to protect mice from P. aeruginosa pathogenesis. MET-NEs showed the highest protective activity against pseudomonal infection in vivo. Our findings support the promising use of nano formulations particularly Ag-MET-NEs as an alternative against multidrug resistant pseudomonal infections via inhibition of virulence factors and quorum sensing gene expression.


Subject(s)
Metal Nanoparticles , Metformin , Animals , Emulsions , Hypoglycemic Agents/pharmacology , Metformin/pharmacology , Mice , Pseudomonas aeruginosa , Silver/pharmacology , Virulence , Virulence Factors/genetics , Virulence Factors/metabolism
4.
AMB Express ; 12(1): 84, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35771288

ABSTRACT

Staphylococcus aureus is a prevalent etiological agent of health care associated and community acquired infections. Antibiotic abuse resulted in developing multidrug resistance in S. aureus that complicates treatment of infections. Targeting bacterial virulence using FDA approved medication offers an alternative to the antibiotics with no stress on bacterial viability. Using nanomaterials as anti-virulence agent against S. aureus virulence factors is a valuable approach. This study aims to investigate the impact of metformin (MET), metformin nano (MET-Nano), silver metformin nano structure (Ag-MET-Ns) and silver nanoparticles (AgNPs) on S. aureus virulence and pathogenicity. The in vitro results showed a higher inhibitory activity against S. aureus virulence factors with both MET-Nano and Ag-MET-Ns treatment. However, genotypically, it was found that except for agrA and icaR genes that are upregulated, the tested agents significantly downregulated the expression of crtM, sigB, sarA and fnbA genes, with Ag-MET-Ns being the most efficient one. MET-Nano exhibited the highest protection against S. aureus infection in mice. These data indicate the promising anti-virulence activity of nanoformulations especially Ag-MET-Ns against multidrug resistant S. aureus by inhibiting quorum sensing signaling system.

SELECTION OF CITATIONS
SEARCH DETAIL
...