Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Yeast ; 40(11): 511-539, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37921426

ABSTRACT

Tropical rainforests and related biomes are found in Asia, Australia, Africa, Central and South America, Mexico, and many Pacific Islands. These biomes encompass less than 20% of Earth's terrestrial area, may contain about 50% of the planet's biodiversity, and are endangered regions vulnerable to deforestation. Tropical rainforests have a great diversity of substrates that can be colonized by yeasts. These unicellular fungi contribute to the recycling of organic matter, may serve as a food source for other organisms, or have ecological interactions that benefit or harm plants, animals, and other fungi. In this review, we summarize the most important studies of yeast biodiversity carried out in these biomes, as well as new data, and discuss the ecology of yeast genera frequently isolated from tropical forests and the potential of these microorganisms as a source of bioinnovation. We show that tropical forest biomes represent a tremendous source of new yeast species. Although many studies, most using culture-dependent methods, have already been carried out in Central America, South America, and Asia, the tropical forest biomes of Africa and Australasia remain an underexplored source of novel yeasts. We hope that this review will encourage new researchers to study yeasts in unexplored tropical forest habitats.


Subject(s)
Forests , Tropical Climate , Animals , Biodiversity , Ecosystem , Plants
2.
BMC Microbiol ; 23(1): 309, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37884896

ABSTRACT

BACKGROUND: Stress-tolerant yeasts are highly desirable for cost-effective bioprocessing. Several strategies have been documented to develop robust yeasts, such as genetic and metabolic engineering, artificial selection, and natural selection strategies, among others. However, the significant drawbacks of such techniques have motivated the exploration of naturally occurring stress-tolerant yeasts. We previously explored the biodiversity of non-conventional dung beetle-associated yeasts from extremophilic and pristine environments in Botswana (Nwaefuna AE et.al., Yeast, 2023). Here, we assessed their tolerance to industrially relevant stressors individually, such as elevated concentrations of osmolytes, organic acids, ethanol, and oxidizing agents, as well as elevated temperatures. RESULTS: Our findings suggest that these dung beetle-associated yeasts tolerate various stresses comparable to those of the robust bioethanol yeast strain, Saccharomyces cerevisiae (Ethanol Red™). Fifty-six percent of the yeast isolates were tolerant of temperatures up to 42 °C, 12.4% of them could tolerate ethanol concentrations up to 9% (v/v), 43.2% of them were tolerant to formic acid concentrations up to 20 mM, 22.7% were tolerant to acetic acid concentrations up to 45 mM, 34.0% of them could tolerate hydrogen peroxide up to 7 mM, and 44.3% of the yeasts could tolerate osmotic stress up to 1.5 M. CONCLUSION: The ability to tolerate multiple stresses is a desirable trait in the selection of novel production strains for diverse biotechnological applications, such as bioethanol production. Our study shows that the exploration of natural diversity in the search for stress-tolerant yeasts is an appealing approach for the development of robust yeasts.


Subject(s)
Saccharomyces cerevisiae , Yeasts , Saccharomyces cerevisiae/metabolism , Yeasts/genetics , Yeasts/metabolism , Ethanol/metabolism , Osmotic Pressure , Temperature , Industrial Microbiology/methods , Fermentation
3.
G3 (Bethesda) ; 13(7)2023 07 05.
Article in English | MEDLINE | ID: mdl-37267305

ABSTRACT

The large-scale and nonaseptic fermentation of sugarcane feedstocks into fuel ethanol in biorefineries represents a unique ecological niche, in which the yeast Saccharomyces cerevisiae is the predominant organism. Several factors, such as sugarcane variety, process design, and operating and weather conditions, make each of the ∼400 industrial units currently operating in Brazil a unique ecosystem. Here, we track yeast population dynamics in 2 different biorefineries through 2 production seasons (April to November of 2018 and 2019), using a novel statistical framework on a combination of metagenomic and clonal sequencing data. We find that variation from season to season in 1 biorefinery is small compared to the differences between the 2 units. In 1 biorefinery, all lineages present during the entire production period derive from 1 of the starter strains, while in the other, invading lineages took over the population and displaced the starter strain. However, despite the presence of invading lineages and the nonaseptic nature of the process, all yeast clones we isolated are phylogenetically related to other previously sequenced bioethanol yeast strains, indicating a common origin from this industrial niche. Despite the substantial changes observed in yeast populations through time in each biorefinery, key process indicators remained quite stable through both production seasons, suggesting that the process is robust to the details of these population dynamics.


Subject(s)
Saccharomyces cerevisiae , Saccharum , Saccharomyces cerevisiae/genetics , Brazil , Ecosystem , Industrial Microbiology , Fermentation
4.
Sci Rep ; 13(1): 2126, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36746999

ABSTRACT

Both the identity and the amount of a carbon source present in laboratory or industrial cultivation media have major impacts on the growth and physiology of a microbial species. In the case of the yeast Saccharomyces cerevisiae, sucrose is arguably the most important sugar used in industrial biotechnology, whereas glucose is the most common carbon and energy source used in research, with many well-known and described regulatory effects, e.g. glucose repression. Here we compared the label-free proteomes of exponentially growing S. cerevisiae cells in a defined medium containing either sucrose or glucose as the sole carbon source. For this purpose, bioreactor cultivations were employed, and three different strains were investigated, namely: CEN.PK113-7D (a common laboratory strain), UFMG-CM-Y259 (a wild isolate), and JP1 (an industrial bioethanol strain). These strains present different physiologies during growth on sucrose; some of them reach higher specific growth rates on this carbon source, when compared to growth on glucose, whereas others display the opposite behavior. It was not possible to identify proteins that commonly presented either higher or lower levels during growth on sucrose, when compared to growth on glucose, considering the three strains investigated here, except for one protein, named Mnp1-a mitochondrial ribosomal protein of the large subunit, which had higher levels on sucrose than on glucose, for all three strains. Interestingly, following a Gene Ontology overrepresentation and KEGG pathway enrichment analyses, an inverse pattern of enriched biological functions and pathways was observed for the strains CEN.PK113-7D and UFMG-CM-Y259, which is in line with the fact that whereas the CEN.PK113-7D strain grows faster on glucose than on sucrose, the opposite is observed for the UFMG-CM-Y259 strain.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Proteome/metabolism , Glucose/metabolism , Sucrose/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
5.
Appl Microbiol Biotechnol ; 105(9): 3859-3871, 2021 May.
Article in English | MEDLINE | ID: mdl-33860834

ABSTRACT

Agroindustrial by-products and residues can be transformed into valuable compounds in biorefineries. Here, we present a new concept: production of fuel ethanol, whey protein, and probiotic yeast from cheese whey. An initial screening under industrially relevant conditions, involving thirty Kluyveromyces marxianus strains, was carried out using spot assays to evaluate their capacity to grow on cheese whey or on whey permeate (100 g lactose/L), under aerobic or anaerobic conditions, in the absence or presence of 5% ethanol, at pH 5.8 or pH 2.5. The four best growing K. marxianus strains were selected and further evaluated in a miniaturized industrial fermentation process using reconstituted whey permeate (100 g lactose/L) with cell recycling (involving sulfuric acid treatment). After five consecutive fermentation cycles, the ethanol yield on sugar reached 90% of the theoretical maximum in the best cases, with 90% cell viability. Cells harvested at this point displayed probiotic properties such as the capacity to survive the passage through the gastrointestinal tract and capacity to modulate the innate immune response of intestinal epithelium, both in vitro. Furthermore, the CIDCA 9121 strain was able to protect against histopathological damage in an animal model of acute colitis. Our findings demonstrate that K. marxianus CIDCA 9121 is capable of efficiently fermenting the lactose present in whey permeate to ethanol and that the remaining yeast biomass has probiotic properties, enabling an integrated process for the obtainment of whey protein (WP), fuel ethanol, and probiotics from cheese whey.Key points• K. marxianus-selected strains ferment whey permeate with 90% ethanol yield.• Industrial fermentation conditions do not affect selected yeast probiotic capacity.• Whey permeate, fuel ethanol, and probiotic biomass can be obtained in a biorefinery.


Subject(s)
Cheese , Kluyveromyces , Probiotics , Animals , Ethanol , Fermentation , Lactose , Whey , Whey Proteins
6.
FEMS Yeast Res ; 21(3)2021 04 07.
Article in English | MEDLINE | ID: mdl-33826723

ABSTRACT

Present knowledge on the quantitative aerobic physiology of the yeast Saccharomyces cerevisiae during growth on sucrose as sole carbon and energy source is limited to either adapted cells or to the model laboratory strain CEN.PK113-7D. To broaden our understanding of this matter and open novel opportunities for sucrose-based biotechnological processes, we characterized three strains, with distinct backgrounds, during aerobic batch bioreactor cultivations. Our results reveal that sucrose metabolism in S. cerevisiae is a strain-specific trait. Each strain displayed distinct extracellular hexose concentrations and invertase activity profiles. Especially, the inferior maximum specific growth rate (0.21 h-1) of the CEN.PK113-7D strain, with respect to that of strains UFMG-CM-Y259 (0.37 h-1) and JP1 (0.32 h-1), could be associated to its low invertase activity (0.04-0.09 U/mgDM). Moreover, comparative experiments with glucose or fructose alone, or in combination, suggest mixed mechanisms of sucrose utilization by the industrial strain JP1, and points out the remarkable ability of the wild isolate UFMG-CM-259 to grow faster on sucrose than on glucose in a well-controlled cultivation system. This work hints to a series of metabolic traits that can be exploited to increase sucrose catabolic rates and bioprocess efficiency.


Subject(s)
Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/physiology , Sucrose/metabolism , Aerobiosis , Bioreactors , Biotechnology , Fructose/metabolism , Glucose/metabolism , Phenotype , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
7.
Yeast ; 35(12): 639-652, 2018 12.
Article in English | MEDLINE | ID: mdl-30221387

ABSTRACT

Knowledge on the genetic factors important for the efficient expression of plant transporters in yeast is still very limited. Phaseolus vulgaris sucrose facilitator 1 (PvSuf1), a presumable uniporter, was an essential component in a previously published strategy aimed at increasing ATP yield in Saccharomyces cerevisiae. However, attempts to construct yeast strains in which sucrose metabolism was dependent on PvSUF1 led to slow sucrose uptake. Here, PvSUF1-dependent S. cerevisiae strains were evolved for faster growth. Of five independently evolved strains, two showed an approximately twofold higher anaerobic growth rate on sucrose than the parental strain (µ = 0.19 h-1 and µ = 0.08 h-1 , respectively). All five mutants displayed sucrose-induced proton uptake (13-50 µmol H+ (g biomass)-1  min-1 ). Their ATP yield from sucrose dissimilation, as estimated from biomass yields in anaerobic chemostat cultures, was the same as that of a congenic strain expressing the native sucrose symporter Mal11p. Four out of six observed amino acid substitutions encoded by evolved PvSUF1 alleles removed or introduced a cysteine residue and may be involved in transporter folding and/or oligomerization. Expression of one of the evolved PvSUF1 alleles (PvSUF1I209F C265F G326C ) in an unevolved strain enabled it to grow on sucrose at the same rate (0.19 h-1 ) as the corresponding evolved strain. This study shows how laboratory evolution may improve sucrose uptake in yeast via heterologous plant transporters, highlights the importance of cysteine residues for their efficient expression, and warrants reinvestigation of PvSuf1's transport mechanism.


Subject(s)
Membrane Transport Proteins/metabolism , Mutant Proteins/metabolism , Mutation, Missense , Phaseolus/enzymology , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Sucrose/metabolism , Adenosine Triphosphate/metabolism , Anaerobiosis , Biological Transport , Membrane Transport Proteins/genetics , Mutant Proteins/genetics , Phaseolus/genetics , Recombinant Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development
8.
Antonie Van Leeuwenhoek ; 111(2): 183-195, 2018 02.
Article in English | MEDLINE | ID: mdl-28900755

ABSTRACT

The yeast Kluyveromyces lactis has received attention both from academia and industry due to some important features, such as its capacity to grow in lactose-based media, its safe status, its suitability for large-scale cultivation and for heterologous protein synthesis. It has also been considered as a model organism for genomics and metabolic regulation. Despite this, very few studies were carried out hitherto under strictly controlled conditions, such as those found in a chemostat. Here we report a set of quantitative physiological data generated during chemostat cultivations with the K. lactis CBS 2359 strain, obtained under glucose-limiting and fully aerobic conditions. This dataset serves [corrected] as a basis for the comparison of K. lactis with the model yeast Saccharomyces cerevisiae in terms of their elemental compositions, as well as for future metabolic flux analysis and metabolic modelling studies with K. lactis.


Subject(s)
Glucose/metabolism , Kluyveromyces/physiology , Batch Cell Culture Techniques , Biomass , Bioreactors , Extracellular Space , Kluyveromyces/chemistry , Metabolome , Metabolomics/methods
9.
Metab Eng ; 45: 121-133, 2018 01.
Article in English | MEDLINE | ID: mdl-29196124

ABSTRACT

Anaerobic industrial fermentation processes do not require aeration and intensive mixing and the accompanying cost savings are beneficial for production of chemicals and fuels. However, the free-energy conservation of fermentative pathways is often insufficient for the production and export of the desired compounds and/or for cellular growth and maintenance. To increase free-energy conservation during fermentation of the industrially relevant disaccharide sucrose by Saccharomyces cerevisiae, we first replaced the native yeast α-glucosidases by an intracellular sucrose phosphorylase from Leuconostoc mesenteroides (LmSPase). Subsequently, we replaced the native proton-coupled sucrose uptake system by a putative sucrose facilitator from Phaseolus vulgaris (PvSUF1). The resulting strains grew anaerobically on sucrose at specific growth rates of 0.09 ± 0.02h-1 (LmSPase) and 0.06 ± 0.01h-1 (PvSUF1, LmSPase). Overexpression of the yeast PGM2 gene, which encodes phosphoglucomutase, increased anaerobic growth rates on sucrose of these strains to 0.23 ± 0.01h-1 and 0.08 ± 0.00h-1, respectively. Determination of the biomass yield in anaerobic sucrose-limited chemostat cultures was used to assess the free-energy conservation of the engineered strains. Replacement of intracellular hydrolase with a phosphorylase increased the biomass yield on sucrose by 31%. Additional replacement of the native proton-coupled sucrose uptake system by PvSUF1 increased the anaerobic biomass yield by a further 8%, resulting in an overall increase of 41%. By experimentally demonstrating an energetic benefit of the combined engineering of disaccharide uptake and cleavage, this study represents a first step towards anaerobic production of compounds whose metabolic pathways currently do not conserve sufficient free-energy.


Subject(s)
Bacterial Proteins , Glucosyltransferases , Leuconostoc mesenteroides/genetics , Membrane Transport Proteins , Metabolic Engineering , Phaseolus/genetics , Plant Proteins , Saccharomyces cerevisiae , Sucrose/metabolism , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Biological Transport, Active/genetics , Glucosyltransferases/biosynthesis , Glucosyltransferases/genetics , Leuconostoc mesenteroides/enzymology , Membrane Transport Proteins/biosynthesis , Membrane Transport Proteins/genetics , Plant Proteins/biosynthesis , Plant Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
10.
Antonie Van Leeuwenhoek ; 111(2): 197, 2018 02.
Article in English | MEDLINE | ID: mdl-29027144

ABSTRACT

In the original publication of the article, the below mentioned errors have appeared. The correct text is provided in this erratum, In the abstract section, the sentence "This dataset serve" should be replaced as "This dataset serves". Also, the reference "Basso TO, Gomes FS, Lopes ML, et al (2014) Homo- and heterofermentative lactobacilli differently affect sugarcane-based fuel ethanol fermentation. Antonie Van Leeuwenhoek 105:169-177. doi: 10.1007/s10482-013-0063-6 " should be replaced as "Basso TO, Dario MG, Tonso A, Stambuk BU, Gombert AK (2010) Insufficient uracil supply in fully aerobic chemostat cultures of Saccharomyces cerevisiae leads to respiro-fermentative metabolism and double nutrient-limitation. Biotechnol Lett 32:973-977. doi: 10.1007/s10529-010-0248-2 ". Finally, in the Table 2 footnote, "according to (Heijnen 1981)" should be replaced as "according to Heijnen (1981)".

11.
FEMS Yeast Res ; 17(1)2017 01 01.
Article in English | MEDLINE | ID: mdl-28087672

ABSTRACT

Many relevant options to improve efficacy and kinetics of sucrose metabolism in Saccharomyces cerevisiae and, thereby, the economics of sucrose-based processes remain to be investigated. An essential first step is to identify all native sucrose-hydrolysing enzymes and sucrose transporters in this yeast, including those that can be activated by suppressor mutations in sucrose-negative strains. A strain in which all known sucrose-transporter genes (MAL11, MAL21, MAL31, MPH2, MPH3) were deleted did not grow on sucrose after 2 months of incubation. In contrast, a strain with deletions in genes encoding sucrose-hydrolysing enzymes (SUC2, MAL12, MAL22, MAL32) still grew on sucrose. Its specific growth rate increased from 0.08 to 0.25 h-1 after sequential batch cultivation. This increase was accompanied by a 3-fold increase of in vitro sucrose-hydrolysis and isomaltase activities, as well as by a 3- to 5-fold upregulation of the isomaltase-encoding genes IMA1 and IMA5. One-step Cas9-mediated deletion of all isomaltase-encoding genes (IMA1-5) completely abolished sucrose hydrolysis. Even after 2 months of incubation, the resulting strain did not grow on sucrose. This sucrose-negative strain can be used as a platform to test metabolic engineering strategies and for fundamental studies into sucrose hydrolysis or transport.


Subject(s)
Metabolic Engineering , Metabolic Networks and Pathways/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sucrose/metabolism , Biological Transport , Gene Deletion , Hydrolysis , Saccharomyces cerevisiae/growth & development
12.
FEMS Yeast Res ; 16(7)2016 11.
Article in English | MEDLINE | ID: mdl-27609600

ABSTRACT

Fourteen indigenous Saccharomyces cerevisiae strains isolated from the barks of three tree species located in the Atlantic Rain Forest and Cerrado biomes in Brazil were genetically and physiologically compared to laboratory strains and to strains from the Brazilian fuel ethanol industry. Although no clear correlation could be found either between phenotype and isolation spot or between phenotype and genomic lineage, a set of indigenous strains with superior industrially relevant traits over commonly known industrial and laboratory strains was identified: strain UFMG-CM-Y257 has a very high specific growth rate on sucrose (0.57 ± 0.02 h-1), high ethanol yield (1.65 ± 0.02 mol ethanol mol hexose equivalent-1), high ethanol productivity (0.19 ± 0.00 mol L-1 h-1), high tolerance to acetic acid (10 g L-1) and to high temperature (40°C). Strain UFMG-CM-Y260 displayed high ethanol yield (1.67 ± 0.13 mol ethanol mol hexose equivalent-1), high tolerance to ethanol and to low pH, a trait which is important for non-aseptic industrial processes. Strain UFMG-CM-Y267 showed high tolerance to acetic acid and to high temperature (40°C), which is of particular interest to second generation industrial processes.


Subject(s)
Biodiversity , Industrial Microbiology/methods , Saccharomyces cerevisiae/isolation & purification , Saccharomyces cerevisiae/physiology , Acetic Acid/toxicity , Brazil , Drug Tolerance , Ethanol/metabolism , Hot Temperature , Saccharomyces cerevisiae/classification , Sucrose/metabolism , Trees/microbiology
13.
Appl Microbiol Biotechnol ; 100(14): 6193-6208, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27260286

ABSTRACT

The preferentially respiring and thermotolerant yeast Kluyveromyces marxianus is an emerging host for heterologous protein synthesis, surpassing the traditional preferentially fermenting yeast Saccharomyces cerevisiae in some important aspects: K . marxianus can grow at temperatures 10 °C higher than S. cerevisiae, which may result in decreased costs for cooling bioreactors and reduced contamination risk; has ability to metabolize a wider variety of sugars, such as lactose and xylose; is the fastest growing eukaryote described so far; and does not require special cultivation techniques (such as fed-batch) to avoid fermentative metabolism. All these advantages exist together with a high secretory capacity, performance of eukaryotic post-translational modifications, and with a generally regarded as safe (GRAS) status. In the last years, replication origins from several Kluyveromyces spp. have been used for the construction of episomal vectors, and also integrative strategies have been developed based on the tendency for non-homologous recombination displayed by K. marxianus. The recessive URA3 auxotrophic marker and the dominant Kan(R) are mostly used for selection of transformed cells, but other markers have been made available. Homologous and heterologous promoters and secretion signals have been characterized, with the K. marxianus INU1 expression and secretion system being of remarkable functionality. The efficient synthesis of roughly 50 heterologous proteins has been demonstrated, including one thermophilic enzyme. In this mini-review, we summarize the physiological characteristics of K. marxianus relevant for its use in the efficient synthesis of heterologous proteins, the efforts performed hitherto in the development of a molecular toolbox for this purpose, and some successful examples.


Subject(s)
Gene Expression Regulation, Fungal , Industrial Microbiology , Kluyveromyces/metabolism , Protein Biosynthesis , Fermentation , Fungal Proteins/genetics , Fungal Proteins/metabolism , Genomics , Kluyveromyces/classification , Kluyveromyces/genetics , Lactose/metabolism , Plasmids/genetics , Plasmids/metabolism , Promoter Regions, Genetic , Protein Processing, Post-Translational , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Temperature , Xylose/metabolism
14.
Curr Opin Biotechnol ; 33: 81-6, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25576737

ABSTRACT

Current fuel ethanol production using yeasts and starch or sucrose-based feedstocks is referred to as 1st generation (1G) ethanol production. These processes are characterized by the high contribution of sugar prices to the final production costs, by high production volumes, and by low profit margins. In this context, small improvements in the ethanol yield on sugars have a large impact on process economy. Three types of strategies used to achieve this goal are discussed: engineering free-energy conservation, engineering redox-metabolism, and decreasing sugar losses in the process. Whereas the two former strategies lead to decreased biomass and/or glycerol formation, the latter requires increased process and/or yeast robustness.


Subject(s)
Carbohydrate Metabolism , Ethanol/metabolism , Fermentation , Yeasts/metabolism , Biomass , Carbohydrates
15.
FEMS Yeast Res ; 14(8): 1196-205, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25263709

ABSTRACT

Selected Saccharomyces cerevisiae strains are used in Brazil to produce the hitherto most energetically efficient first-generation fuel ethanol. Although genome and some transcriptome data are available for some of these strains, quantitative physiological data are lacking. This study investigates the physiology of S. cerevisiae strain PE-2, widely used in the Brazilian fuel ethanol industry, in comparison with CEN.PK113-7D, a reference laboratory strain, focusing on tolerance to low pH and acetic acid stress. Both strains were grown in anaerobic bioreactors, operated as batch, chemostat or dynamic continuous cultures. Despite their different backgrounds, biomass and product formation by the two strains were similar under a range of conditions (pH 5 or pH < 3, with or without 105 mM acetic acid added). PE-2 displayed a remarkably higher fitness than CEN.PK113-7D during batch cultivation on complex Yeast extract - Peptone - Dextrose medium at low pH (2.7). Kinetics of viability loss of non-growing cells, incubated at pH 1.5, indicated a superior survival of glucose-depleted PE-2 cells, when compared with either CEN.PK113-7D or a commercial bakers' strain. These results indicate that the sulfuric acid washing step, used in the fuel ethanol industry to decrease bacterial contamination due to non-aseptic operation, might have exerted an important selective pressure on the microbial populations present in such environments.


Subject(s)
Biofuels , Drug Tolerance , Ethanol/metabolism , Industrial Microbiology , Saccharomyces cerevisiae/physiology , Stress, Physiological , Acetates/toxicity , Anaerobiosis , Bioreactors/microbiology , Brazil , Culture Media/chemistry , Hydrogen-Ion Concentration , Microbial Viability , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/growth & development
16.
Biotechnol J ; 9(6): 776-90, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24777859

ABSTRACT

We describe here the first genome-scale metabolic model of Kluyveromyces lactis, iOD907. It is partially compartmentalized (four compartments), composed of 1867 reactions and 1476 metabolites. The iOD907 model performed well when comparing the positive growth of K. lactis to Biolog experiments and to an online catalogue of strains that provides information on carbon sources in which K. lactis is able to grow. Chemostat experiments were used to adjust non-growth-associated energy requirements, and the model proved accurate when predicting the biomass, oxygen and carbon dioxide yields. When compared to published experiments, in silico knockouts accurately predicted in vivo phenotypes. The iOD907 genome-scale metabolic model complies with the MIRIAM (minimum information required for the annotation of biochemical models) standards for the annotation of enzymes, transporters, metabolites and reactions. Moreover, it contains direct links to Kyoto encyclopedia of genes and genomes (KEGG; for enzymes, metabolites and reactions) and to the Transporters Classification Database (TCDB) for transporters, allowing easy comparisons to other models. Furthermore, this model is provided in the well-established systems biology markup language (SBML) format, which means that it can be used in most metabolic engineering platforms, such as OptFlux or Cobra. The model is able to predict the behavior of K. lactis under different environmental conditions and genetic perturbations. Furthermore, by performing simulations and optimizations, it can be important in the design of minimal media and will allow insights on the milk yeast's metabolism, as well as identifying metabolic engineering targets for improving the production of products of interest.


Subject(s)
Kluyveromyces/genetics , Kluyveromyces/metabolism , Metabolome , Models, Biological , Animals , Computer Simulation , Genome, Fungal , Kluyveromyces/classification
17.
PLoS One ; 8(2): e56388, 2013.
Article in English | MEDLINE | ID: mdl-23409181

ABSTRACT

Calorie restriction (CR) is an intervention known to extend the lifespan of a wide variety of organisms. In S. cerevisiae, chronological lifespan is prolonged by decreasing glucose availability in the culture media, a model for CR. The mechanism has been proposed to involve an increase in the oxidative (versus fermentative) metabolism of glucose. Here, we measured wild-type and respiratory incompetent (ρ(0)) S. cerevisiae biomass formation, pH, oxygen and glucose consumption, and the evolution of ethanol, glycerol, acetate, pyruvate and succinate levels during the course of 28 days of chronological aging, aiming to identify metabolic changes responsible for the effects of CR. The concomitant and quantitative measurements allowed for calculations of conversion factors between different pairs of substrates and products, maximum specific substrate consumption and product formation rates and maximum specific growth rates. Interestingly, we found that the limitation of glucose availability in CR S. cerevisiae cultures hysteretically increases oxygen consumption rates many hours after the complete exhaustion of glucose from the media. Surprisingly, glucose-to-ethanol conversion and cellular growth supported by glucose were not quantitatively altered by CR. Instead, we found that CR primed the cells for earlier, faster and more efficient metabolism of respiratory substrates, especially ethanol. Since lifespan-enhancing effects of CR are absent in respiratory incompetent ρ(0) cells, we propose that the hysteretic effect of glucose limitation on oxidative metabolism is central toward chronological lifespan extension by CR in this yeast.


Subject(s)
Saccharomyces cerevisiae/metabolism , Biomass , Caloric Restriction , Cell Respiration , Cell Survival , Culture Media/chemistry , Energy Metabolism , Glucose/metabolism , Hydrogen-Ion Concentration , Mitochondria/metabolism , Oxidation-Reduction , Oxygen/metabolism , Saccharomyces cerevisiae/cytology , Time Factors
18.
BMC Genomics ; 13: 517, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-23025710

ABSTRACT

BACKGROUND: Even before having its genome sequence published in 2004, Kluyveromyces lactis had long been considered a model organism for studies in genetics and physiology. Research on Kluyveromyces lactis is quite advanced and this yeast species is one of the few with which it is possible to perform formal genetic analysis. Nevertheless, until now, no complete metabolic functional annotation has been performed to the proteins encoded in the Kluyveromyces lactis genome. RESULTS: In this work, a new metabolic genome-wide functional re-annotation of the proteins encoded in the Kluyveromyces lactis genome was performed, resulting in the annotation of 1759 genes with metabolic functions, and the development of a methodology supported by merlin (software developed in-house). The new annotation includes novelties, such as the assignment of transporter superfamily numbers to genes identified as transporter proteins. Thus, the genes annotated with metabolic functions could be exclusively enzymatic (1410 genes), transporter proteins encoding genes (301 genes) or have both metabolic activities (48 genes). The new annotation produced by this work largely surpassed the Kluyveromyces lactis currently available annotations. A comparison with KEGG's annotation revealed a match with 844 (~90%) of the genes annotated by KEGG, while adding 850 new gene annotations. Moreover, there are 32 genes with annotations different from KEGG. CONCLUSIONS: The methodology developed throughout this work can be used to re-annotate any yeast or, with a little tweak of the reference organism, the proteins encoded in any sequenced genome. The new annotation provided by this study offers basic knowledge which might be useful for the scientific community working on this model yeast, because new functions have been identified for the so-called metabolic genes. Furthermore, it served as the basis for the reconstruction of a compartmentalized, genome-scale metabolic model of Kluyveromyces lactis, which is currently being finished.


Subject(s)
Fungal Proteins/genetics , Genome, Fungal , Kluyveromyces/genetics , Carbon/metabolism , Databases, Genetic , Fungal Proteins/metabolism , Kluyveromyces/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Software
19.
Metab Eng ; 14(4): 437-48, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22525490

ABSTRACT

Industrial production of semi-synthetic cephalosporins by Penicillium chrysogenum requires supplementation of the growth media with the side-chain precursor adipic acid. In glucose-limited chemostat cultures of P. chrysogenum, up to 88% of the consumed adipic acid was not recovered in cephalosporin-related products, but used as an additional carbon and energy source for growth. This low efficiency of side-chain precursor incorporation provides an economic incentive for studying and engineering the metabolism of adipic acid in P. chrysogenum. Chemostat-based transcriptome analysis in the presence and absence of adipic acid confirmed that adipic acid metabolism in this fungus occurs via ß-oxidation. A set of 52 adipate-responsive genes included six putative genes for acyl-CoA oxidases and dehydrogenases, enzymes responsible for the first step of ß-oxidation. Subcellular localization of the differentially expressed acyl-CoA oxidases and dehydrogenases revealed that the oxidases were exclusively targeted to peroxisomes, while the dehydrogenases were found either in peroxisomes or in mitochondria. Deletion of the genes encoding the peroxisomal acyl-CoA oxidase Pc20g01800 and the mitochondrial acyl-CoA dehydrogenase Pc20g07920 resulted in a 1.6- and 3.7-fold increase in the production of the semi-synthetic cephalosporin intermediate adipoyl-6-APA, respectively. The deletion strains also showed reduced adipate consumption compared to the reference strain, indicating that engineering of the first step of ß-oxidation successfully redirected a larger fraction of adipic acid towards cephalosporin biosynthesis.


Subject(s)
Cephalosporins/biosynthesis , Metabolic Engineering/methods , Penicillium chrysogenum/metabolism , Acyl-CoA Dehydrogenases/genetics , Acyl-CoA Dehydrogenases/metabolism , Acyl-CoA Oxidase/genetics , Acyl-CoA Oxidase/metabolism , Adipates/metabolism , Gene Deletion , Gene Expression Regulation, Fungal , Glucose/metabolism , Mitochondria/enzymology , Mitochondria/genetics , Oxidation-Reduction , Peroxisomes/enzymology , Peroxisomes/genetics , Transcriptome
20.
Metab Eng ; 13(6): 694-703, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21963484

ABSTRACT

Sucrose is a major carbon source for industrial bioethanol production by Saccharomyces cerevisiae. In yeasts, two modes of sucrose metabolism occur: (i) extracellular hydrolysis by invertase, followed by uptake and metabolism of glucose and fructose, and (ii) uptake via sucrose-proton symport followed by intracellular hydrolysis and metabolism. Although alternative start codons in the SUC2 gene enable synthesis of extracellular and intracellular invertase isoforms, sucrose hydrolysis in S. cerevisiae predominantly occurs extracellularly. In anaerobic cultures, intracellular hydrolysis theoretically enables a 9% higher ethanol yield than extracellular hydrolysis, due to energy costs of sucrose-proton symport. This prediction was tested by engineering the promoter and 5' coding sequences of SUC2, resulting in predominant (94%) cytosolic localization of invertase. In anaerobic sucrose-limited chemostats, this iSUC2-strain showed an only 4% increased ethanol yield and high residual sucrose concentrations indicated suboptimal sucrose-transport kinetics. To improve sucrose-uptake affinity, it was subjected to 90 generations of laboratory evolution in anaerobic, sucrose-limited chemostat cultivation, resulting in a 20-fold decrease of residual sucrose concentrations and a 10-fold increase of the sucrose-transport capacity. A single-cell isolate showed an 11% higher ethanol yield on sucrose in chemostat cultures than an isogenic SUC2 reference strain, while transcriptome analysis revealed elevated expression of AGT1, encoding a disaccharide-proton symporter, and other maltose-related genes. After deletion of both copies of the duplicated AGT1, growth characteristics reverted to that of the unevolved SUC2 and iSUC2 strains. This study demonstrates that engineering the topology of sucrose metabolism is an attractive strategy to improve ethanol yields in industrial processes.


Subject(s)
Ethanol/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/metabolism , Sucrose/metabolism , beta-Fructofuranosidase/genetics , Biological Evolution , Gene Deletion , Gene Expression Profiling , Monosaccharide Transport Proteins/biosynthesis , Promoter Regions, Genetic , Protein Engineering , Saccharomyces cerevisiae Proteins/biosynthesis , Symporters/biosynthesis , beta-Fructofuranosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...