Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 91(21): 213002, 2003 Nov 21.
Article in English | MEDLINE | ID: mdl-14683295

ABSTRACT

We have prepared and detected quantum coherences of trapped cesium atoms with long dephasing times. Controlled transport by an "optical conveyor belt" over macroscopic distances preserves the atomic coherence with slight reduction of coherence time. The limiting dephasing effects are experimentally identified, and we present an analytical model of the reversible and irreversible dephasing mechanisms. Our experimental methods are applicable at the single-atom level. Coherent quantum bit operations along with quantum state transport open the route towards a "quantum shift register" of individual neutral atoms.

2.
Science ; 293(5528): 278-80, 2001 Jul 13.
Article in English | MEDLINE | ID: mdl-11408622

ABSTRACT

We report the realization of a deterministic source of single atoms. A standing-wave dipole trap is loaded with one or any desired number of cold cesium atoms from a magneto-optical trap. By controlling the motion of the standing wave, we adiabatically transport the atom with submicrometer precision over macroscopic distances on the order of a centimeter. The displaced atom is observed directly in the dipole trap by fluorescence detection. The trapping field can also be accelerated to eject a single atom into free flight with well-defined velocities.

3.
Phys Rev Lett ; 85(18): 3777-80, 2000 Oct 30.
Article in English | MEDLINE | ID: mdl-11041925

ABSTRACT

We describe a simple experimental technique which allows us to store a small and deterministic number of neutral atoms in an optical dipole trap. The desired atom number is prepared in a magneto-optical trap overlapped with a single focused Nd:YAG laser beam. Dipole trap loading efficiency of 100% and storage times of about one minute have been achieved. We have also prepared atoms in a certain hyperfine state and demonstrated the feasibility of a state-selective detection via resonance fluorescence at the level of a few neutral atoms. A spin relaxation time of the polarized sample of 4.2+/-0.7 s has been measured. Possible applications are briefly discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...