Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Life Sci ; 228: 121-127, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31039364

ABSTRACT

AIMS: B1- and B2-kinin receptors play a major role in several cardiovascular diseases. Therefore, we aimed to evaluate cardiac functional consequences of B1- and B2-kinin receptors ablation, focusing on the cardiac ROS and NO generation. MAIN METHODS: Cardiac contractility, ROS, and NO generation, and protein expression were evaluated in male wild-type (WT), B1- (B1-/-) and B2-kinin (B2-/-) knockout mice. KEY FINDINGS: Impaired contractility in B1-/- and B2-/- hearts was associated with oxidative stress through upregulation of NADPH oxidase p22phox subunit. B1-/- and B2-/- hearts presented higher NO and peroxynitrite levels than WT. Despite decreased sarcoplasmic reticulum Ca2+ ATPase pump (SERCA2) expression, nitration at tyrosine residues of SERCA2 was markedly higher in B1-/- and B2-/- hearts. SIGNIFICANCE: B1- and B2-kinin receptors govern ROS generation, while disruption of B1- and B2-kinin receptors leads to impaired cardiac dysfunction through excessive tyrosine nitration on the SERCA2 structure.


Subject(s)
Heart Diseases/genetics , Heart/physiopathology , Receptor, Bradykinin B1/genetics , Receptor, Bradykinin B2/genetics , Animals , Gene Deletion , Heart Diseases/physiopathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardial Contraction , NADPH Oxidases/metabolism , Nitric Oxide/metabolism , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Receptor, Bradykinin B1/metabolism , Receptor, Bradykinin B2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...