Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (186)2022 08 17.
Article in English | MEDLINE | ID: mdl-36063011

ABSTRACT

Malaria is a major public health concern, presenting more than 200 million cases per year worldwide. Despite years of scientific efforts, protective immunity to malaria is still poorly understood, mainly due to methodological limitations of long-term Plasmodium culture, especially for Plasmodium vivax. Most studies have focused on adaptive immunity protection against malaria by antibodies, which play a key role in controlling malaria. However, the sterile protection induced by attenuated Plasmodium sporozoites vaccines is related to cellular response, mainly to cytotoxic T lymphocytes, such as CD8+ and gamma delta T cells (γδ T). Hence, new methodologies must be developed to better comprehend the functions of the cellular immune response and thus support future therapy and vaccine development. To find a new strategy to analyze this cell-mediated immunity to Plasmodium blood-stage infection, our group established an in vitro assay that measures infected red blood cell (iRBC) killing by cytotoxic lymphocytes. This assay can be used to study cellular immune response mechanisms against different Plasmodium spp. in the blood stage. Innate and adaptative cytotoxic immune cells can directly eliminate iRBCs and the intracellular parasite in an effector:target mechanism. Target iRBCs are labeled to evaluate cell viability, and cocultured with effector cells (CD8+ T, γδ T, NK cells, etc.). The lysis percentage is calculated based on tested conditions, compared to a spontaneous lysis control in a flow cytometry-based assay. Ultimately, this killing assay methodology is a major advance in understanding cell-mediated immunity to blood-stage malaria, helping uncover new potential therapeutic targets and accelerate the development of malaria vaccines.


Subject(s)
Malaria Vaccines , Malaria , Plasmodium , Animals , CD8-Positive T-Lymphocytes , Erythrocytes , Humans , Malaria/parasitology , Sporozoites
2.
Wound Repair Regen ; 30(3): 345-356, 2022 05.
Article in English | MEDLINE | ID: mdl-35373874

ABSTRACT

Photobiomodulation therapy (PBMT) has been widely used to promote tissue repair. However, PBMT's critical roles in the epithelial and mesenchymal tissues interactions are still barely known. Herein, we investigated light parameters on challenged keratinocytes (KC)-i.e., cultivated under oxidative stress-solely or associated with fibroblasts (FB) in a co-culture system. Cells were treated with PBMT at the wavelength of 660 nm, at 20 mW and 0.71 W/cm2 . Three different energy densities were primarily evaluated on KC: 1 (1.4 s), 5 (7 s), and 50 J/cm2 (70 s). Next, KC and FB were co-cultured and assessed at 5 J/cm2 . This energy density was also tested in ex vivo murine skin samples. Our main data suggest that PBMT can increase cellular proliferation at low doses and cell migration in a biphasic mode (1 and 50 J/cm2 ), both further confirmed by the epidermal growth factor receptor ligand-amphiregulin-upregulation. IL-1RA mRNA-the IL-1ß (interleukin-1ß) receptor antagonist recognized to fasten wound repair-was upregulated in the co-culture system. Upon PBMT, the ex vivo findings showed a progressive increase in the epidermal thickness, although presenting qualitatively less differentiated epithelium than the control group. In conclusion, PBMT effects are dependent on the cellular interactions with the surrounding microenvironment. Ultimately, PBMT is anti-inflammatory and contributes to the expression of critical mediators of wound repair.


Subject(s)
Low-Level Light Therapy , Mesenchymal Stem Cells , Animals , Fibroblasts/metabolism , Keratinocytes , Mice , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...