Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Fungi (Basel) ; 7(7)2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34356920

ABSTRACT

Filamentous fungi are known to biosynthesize an extraordinary range of azaphilones pigments with structural diversity and advantages over vegetal-derived colored natural products such agile and simple cultivation in the lab, acceptance of low-cost substrates, speed yield improvement, and ease of downstream processing. Modern genetic engineering allows industrial production, providing pigments with higher thermostability, water-solubility, and promising bioactivities combined with ecological functions. This review, covering the literature from 2020 onwards, focuses on the state-of-the-art of azaphilone dyes, the global market scenario, new compounds isolated in the period with respective biological activities, and biosynthetic pathways. Furthermore, we discussed the innovations of azaphilone cultivation and extraction techniques, as well as in yield improvement and scale-up. Potential applications in the food, cosmetic, pharmaceutical, and textile industries were also explored.

2.
Molecules ; 19(2): 1856-86, 2014 Feb 10.
Article in English | MEDLINE | ID: mdl-24518806

ABSTRACT

The use of biotransformations in organic chemistry is widespread, with highlights of interesting applications in the functionalization of natural products containing unactivated carbons, like the kaurane diterpenes. A number of compounds with kaurane skeletons can be isolated in large amounts from several plant species and a myriad of biological activities has been related to these compounds. Studies on structure versus activity have showed that, in most cases, in kaurane diterpenes, activity increases with the increase of functionalization. Since naturally occurring kaurane diterpenes usually have limited functional groups to be used as targets for semi-synthetic modifications, production of more polar derivatives from kaurane diterpenes have been achieved mostly through the use of fungal biotransformations. In this review, selected examples the wonderful chemical diversity produced by fungi in kaurane diterpenes is presented. This diversity includes mainly hydroxylation of nearly all carbon atoms of the kaurane molecule, many of them carried out stereoselectively, as well as ring rearrangements, among other chemical modifications. Sources of starting materials, general biotransformation protocols employed, fungi with most consistent regioselectivity towards kaurane skeleton, as well as biological activities associated with starting materials and products are also described.


Subject(s)
Biological Products/chemistry , Biotransformation/genetics , Diterpenes, Kaurane/therapeutic use , Molecular Structure , Carbon/chemistry , Diterpenes, Kaurane/chemistry , Fermentation , Fungi/metabolism , Humans , Plants/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...