Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sports Biomech ; : 1-13, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38164700

ABSTRACT

Running synchronised to external cueing is often implemented in both clinical and training settings, and isochronous cueing has been shown to improve running economy. However, such cueing disregards the natural stride-to-stride fluctuations present in human locomotion which is thought to reflect higher levels of adaptability. The present study aimed to investigate how alterations in the temporal structure of cueing affect stride-to-stride variability during running. We hypothesised that running using cueing with a fractal-like structure would preserve the natural stride-to-stride variability of young adults. Thirteen runners performed four 8-min trials: one uncued (UNC) trial and three cued trials presenting an isochronous (ISO), a fractal (FRC) and a random (RND) structure. Repeated measures ANOVAs were used to identify changes in the dependent variables. We have found no main effect on the cardiorespiratory parameters, whereas a significant main effect was observed in the temporal structure of stride-to-stride variability. During FRC, the participants were able to retain the fractal patterns of their natural locomotor variability observed during the UNC condition, while during the ISO and RND they exhibited more random of fluctuations (i.e., lower values of fractal scaling). Our results demonstrate that cueing based on the natural stride-to-stride fluctuations opens new avenues for training and rehabilitation.

2.
Sports Biomech ; : 1-13, 2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35485846

ABSTRACT

Torque outputs exhibit non-random fluctuations in their temporal structure, i.e., complexity. Fatigue has been shown to alter this structure. The torque outputs typically become more regular, resulting in decreased adaptability. Importantly, torque complexity was shown a different recovery pattern after fatigue compared to maximal torque. However, it remains to be understood if these uncoupled patterns of recovery are muscle dependent. In addition, it also remains to be investigated if changes in maximal torque and complexity are correlated. This study investigated (i) the effects of a fatiguing protocol on the complexity and maximal torque from plantar flexors and (ii) the relationship between changes in these two outputs. Ten participants visited the laboratory, and measures were taken at baseline, immediately after, 1 h after and 24 h after the fatiguing protocol. Maximum voluntary contraction, isometric contractions at 30% of maximum and pain pressure threshold were collected. Both legs were assessed, but only one was given the fatiguing protocol. Two-way ANOVAs and correlations were conducted. The fatiguing protocol decreased torque complexity (~35%) and maximal torque (~20%), and they exhibited uncoupled patterns of recovery. Moreover, the correlation analysis showed no correlation between changes in these parameters. These findings support that these parameters are independent of each other.

SELECTION OF CITATIONS
SEARCH DETAIL
...