Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Integr Environ Assess Manag ; 17(3): 507-520, 2021 May.
Article in English | MEDLINE | ID: mdl-33006436

ABSTRACT

Brazil is a global agricultural commodity producer and the largest consumer of pesticides. Pesticide use in Brazil comprised 549 280 tons in 2018. In the country, soybean, corn, and sugar cane are extensively produced, which are the most pesticides demanding crops. In the last years, the records of new pesticides were the highest in the historical series. They can persist in soil or water, accumulate in organisms, and contaminate workers and the general population through the air, water, or food. This review aimed to gather toxicological data obtained by animal models exposed to 4 pesticides: glyphosate, chlorpyrifos, abamectin, and 2,4-D. An additional goal was to compose an overview of how this subject has been approached, surveying which research groups are working on this field, where they are located, and relations with pesticides used in those regions. We collected the papers from the platforms PubMed, Scopus, Scielo, and Web of Science, performed in Brazil from 2014 to 2019. After two-step blind selection using the software Rayyan QCRI by different authors, 67 studies were selected to extract data. We observed that research is more concentrated in the South region, followed by the Southeast and Midwest, with 43%, 32%, and 23% of the studies, respectively. The prevalent institutions are from the states of Rio Grande do Sul, São Paulo, and Goiás. The effects on a variety of biomarkers help predict the potential risks to humans and nontarget organisms. The prevalent animal model was fish (36%). Overall, the main toxic effects evaluated were mortality, abnormalities in the blood cells, developmental abnormalities, and behavior alterations. Integr Environ Assess Manag 2021;17:507-520. © 2020 SETAC.


Subject(s)
Chlorpyrifos , Pesticides , 2,4-Dichlorophenoxyacetic Acid , Animals , Brazil , Chlorpyrifos/toxicity , Glycine/analogs & derivatives , Humans , Ivermectin/analogs & derivatives , Pesticides/analysis , Glyphosate
2.
Amino Acids ; 51(3): 433-449, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30449002

ABSTRACT

Antimicrobial peptides present a broad spectrum of therapeutic applications, including their use as anticancer peptides. These peptides have as target microbial, normal, and cancerous cells. The oncological properties of these peptides may occur by membranolytic mechanisms or non-membranolytics. In this work, we demonstrate for the first time the cytotoxic effects of the cationic alpha-helical antimicrobial peptide LyeTx I-b on glioblastoma lineage U87-MG. The anticancer property of this peptide was associated with a membranolytic mechanism. Loss of membrane integrity occurred after incubation with the peptide for 15 min, as shown by trypan blue uptake, reduction of calcein-AM conversion, and LDH release. Morphological studies using scanning electron microscopy demonstrated disruption of the plasma membrane from cells treated with LyeTx I-b, including the formation of holes or pores. Transmission electron microscopy analyses showed swollen nuclei with mild DNA condensation, cell volume increase with an electron-lucent cytoplasm and organelle vacuolization, but without the rupture of nuclear or plasmatic membranes. Morphometric analyses revealed a high percentage of cells in necroptosis stages, followed by necrosis and apoptosis at lower levels. Necrostatin-1, a known inhibitor of necroptosis, partially protected the cells from the toxicity of the peptide in a concentration-dependent manner. Imaging flow cytometry confirmed that 59% of the cells underwent necroptosis after 3-h incubation with the peptide. It is noteworthy that LyeTx I-b showed only mild cytotoxicity against normal fibroblasts of human and monkey cell lines and low hemolytic activity in human erythrocytes. All data together point out the anticancer potential of this peptide.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Apoptosis/drug effects , Fibroblasts/pathology , Glioblastoma/pathology , Neuroblastoma/pathology , Spider Venoms/pharmacology , Spiders/chemistry , Animals , Autophagy , Cell Membrane Permeability , Cells, Cultured , Fibroblasts/drug effects , Glioblastoma/drug therapy , Hemolysis/drug effects , Humans , Necrosis , Neuroblastoma/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...