Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 416(8): 1983-1995, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38358533

ABSTRACT

Phytotoxins produced by marine microalgae, such as paralytic shellfish toxins (PSTs), can accumulate in bivalve molluscs, representing a human health concern due to the life-threatening symptoms they cause. To avoid the commercialization of contaminated bivalves, monitoring programs were established in the EU. The purpose of this work is the implementation of a PST transforming enzyme-carbamoylase-in an impedimetric test for rapid simultaneous detection of several carbamate and N-sulfocarbamoyl PSTs. Carbamoylase hydrolyses carbamate and sulfocarbamoyl toxins, which may account for up to 90% of bivalve toxicity related to PSTs. Conformational changes of carbamoylase accompanying enzymatic reactions were probed by Fourier transform mid-infrared spectroscopy (FT-MIR) and electrochemical impedance spectroscopy (EIS). Furthermore, a combination of EIS with a metal electrode and a carbamoylase-based assay was employed to harness changes in the enzyme conformation and adsorption on the electrode surface during the enzymatic reaction as an analytical signal. After optimization of the working conditions, the developed impedimetric e-tongue could quantify N-sulfocarbamoyl toxins with a detection limit of 0.1 µM. The developed e-tongue allows the detection of these toxins at concentration levels observed in bivalves with PST toxicity close to the regulatory limit. The quantification of a sum of N-sulfocarbamoyl PSTs in naturally contaminated mussel extracts using the developed impedimetric e-tongue has been demonstrated.


Subject(s)
Bivalvia , Shellfish Poisoning , Animals , Humans , Marine Toxins/chemistry , Electronic Nose , Bivalvia/chemistry , Shellfish/analysis , Carbamates , Shellfish Poisoning/etiology
2.
Sensors (Basel) ; 22(4)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35214431

ABSTRACT

A new method to analyse ammonia in freshwater, based on a piezoelectric quartz crystal coated with the metalloporphyrin chloro[5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato] manganese(III) is presented. A 9 MHz quartz crystal coated on both faces with an amount of porphyrin produced a frequency decrease of 21.4 kHz, which allowed ammonia in a 10.00 mL sample to be quantified in concentrations between 5 and 70 µg L-1, with a sensitivity of 0.60 Hz L µg-1, over a period of at least eight months. The proposed method has several advantages over the officially recommended indophenol spectrophotometric method: sample volume was reduced by a factor of 2.5, toxic reagents (phenol and sodium nitroprusside) were eliminated, analysing turbid samples presented no difficulty, and there was not only a significant time saving in solution preparation, but also in sample analysis time, which was reduced from 1 h to 2 min. No statistically significant differences (α = 0.05) were found both in the mean and precision of the results obtained for ammonia in water samples collected from domestic wells, analysed by this new method and by the indophenol spectrophotometric method. Furthermore, the proposed method would allow the individual quantification, with similar sensitivity, of amines and ammonia within a single analytical run.


Subject(s)
Ammonia , Sound , Fresh Water , Quartz/chemistry , Spectrophotometry
3.
Toxins (Basel) ; 12(5)2020 05 22.
Article in English | MEDLINE | ID: mdl-32456077

ABSTRACT

Paralytic shellfish toxins (PSTs) are a group of toxins that cause paralytic shellfish poisoning through blockage of voltage-gated sodium channels. PSTs are produced by prokaryotic freshwater cyanobacteria and eukaryotic marine dinoflagellates. Proliferation of toxic algae species can lead to harmful algal blooms, during which seafood accumulate high levels of PSTs, posing a health threat to consumers. The existence of PST-transforming enzymes was first remarked due to the divergence of PST profiles and concentrations between contaminated bivalves and toxigenic organisms. Later, several enzymes involved in PST transformation, synthesis and elimination have been identified. The knowledge of PST-transforming enzymes is necessary for understanding the processes of toxin accumulation and depuration in mollusk bivalves. Furthermore, PST-transforming enzymes facilitate the obtainment of pure analogues of toxins as in natural sources they are present in a mixture. Pure compounds are of interest for the development of drug candidates and as analytical reference materials. PST-transforming enzymes can also be employed for the development of analytical tools for toxin detection. This review summarizes the PST-transforming enzymes identified so far in living organisms from bacteria to humans, with special emphasis on bivalves, cyanobacteria and dinoflagellates, and discusses enzymes' biological functions and potential practical applications.


Subject(s)
Bacterial Toxins/metabolism , Cyanobacteria/enzymology , Dinoflagellida/enzymology , Enzymes/metabolism , Harmful Algal Bloom , Marine Toxins/metabolism , Shellfish Poisoning/microbiology , Shellfish/microbiology , Animals , Biotransformation , Bivalvia/enzymology , Bivalvia/microbiology , Fishes/metabolism , Fishes/microbiology , Humans , Substrate Specificity
4.
Sensors (Basel) ; 20(2)2020 Jan 16.
Article in English | MEDLINE | ID: mdl-31963210

ABSTRACT

Out of control proliferation of toxic phytoplankton, called harmful algal blooms (HABs), have a significant economic impact on bivalve aquaculture and harvesting in coastal waters. Some phytotoxins, such as paralytic shellfish toxins (PSTs), are of concern due to the life-threatening symptoms they can cause. Development of rapid and low-cost screening tools would be a welcome addition to the laboratory methodologies employed in routine monitoring programs. However, most of the assays and biosensors for the screening of PSTs, are restricted to a single target, saxitoxin (STX), which is the most potent PST. The present study aimed at developing an assay for the detection of N-sulfocarbamoyl PST-GTX5, which is one of the most abundant toxins in bivalves during G. catenatum blooms as found on the Portuguese coast. Enzymatic assay employing PSTs' transforming enzyme-carbamoylase-was proposed. Carbamoylase was extracted and purified from the surf clam S. solida. Carbamoylase displayed similar specificity to both carbamate (STX) and N-sulfocarbamate toxins (GTX5 and C1+2) converting them into decarbamoyl saxitoxin (dcSTX) and decarbamoyl gonyautoxins 2+3 (dcGTX2+3), respectively. The enzymatic assay involved hydrolysis of GTX5 by carbamoylase and quantification of the product of enzymatic reaction, dcSTX, using a potentiometric chemical sensor. A potentiometric sensor with plasticized PVC membrane that displayed sensitivity to dcSTX and selectivity in the presence of GTX5 was employed. Enzymatic assay allowed determination of GTX5 in the concentration range from 0.43 to 3.30 µmolL-1, which encompasses levels of GTX5 in contaminated bivalve extracts with toxicities above PSTs regulatory limits. The feasibility of the carbamoylase-based potentiometric assay for detection of GTX5 was demonstrated.


Subject(s)
Amidohydrolases/metabolism , Biological Assay/methods , Biosensing Techniques/methods , Marine Toxins/analysis , Amidohydrolases/chemistry , Animals , Bivalvia/chemistry , Marine Toxins/metabolism , Potentiometry/methods
5.
Talanta ; 181: 380-384, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29426529

ABSTRACT

Potentiometric chemical sensors for the detection of paralytic shellfish toxins have been developed. Four toxins typically encountered in Portuguese waters, namely saxitoxin, decarbamoyl saxitoxin, gonyautoxin GTX5 and C1&C2, were selected for the study. A series of miniaturized sensors with solid inner contact and plasticized polyvinylchloride membranes containing ionophores, nine compositions in total, were prepared and their characteristics evaluated. Sensors displayed cross-sensitivity to four studied toxins, i.e. response to several toxins together with low selectivity. High selectivity towards paralytic shellfish toxins was observed in the presence of inorganic cations with selectivity coefficients ranging from 0.04 to 0.001 for Na+ and K+ and 3.6*10-4 to 3.4*10-5 for Ca2+. Detection limits were in the range from 0.25 to 0.9 µmolL-1 for saxitoxin and decarbamoyl saxitoxin, and from 0.08 to 1.8 µmolL-1 for GTX5 and C1&C2, which allows toxin detection at the concentration levels corresponding to the legal limits. Characteristics of the developed sensors allow their use in the electronic tongue multisensor system for simultaneous quantification of paralytic shellfish toxins.


Subject(s)
Biosensing Techniques/methods , Potentiometry/methods , Saxitoxin/analogs & derivatives , Saxitoxin/analysis , Animals , Portugal , Reproducibility of Results , Saxitoxin/chemistry , Shellfish/analysis
6.
Sensors (Basel) ; 12(2): 1422-36, 2012.
Article in English | MEDLINE | ID: mdl-22438717

ABSTRACT

An electronic nose based on coated piezoelectric quartz crystals was used to distinguish cheese made from ewes' milk, and to distinguish cheese varieties. Two sensors coated with Nafion and Carbowax could certify half the ewes' cheese samples, exclude 32 cheeses made from cow's milk and to classify half of the ewes' cheese samples as possibly authentic. Two other sensors, coated with polyvinylpyrrolidone and triethanolamine clearly distinguished between Flamengo, Brie, Gruyère and Mozzarella cheeses. Brie cheeses were further separated according to their origin, and Mozzarella grated cheese also appeared clearly separated from non-grated Mozzarella.


Subject(s)
Biomimetics/instrumentation , Cheese/analysis , Food Analysis/instrumentation , Food Analysis/standards , Micro-Electrical-Mechanical Systems/instrumentation , Nose , Transducers , Animals , Cheese/classification , Cheese/standards , Equipment Design , Equipment Failure Analysis , Female , Portugal , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...