Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 1468, 2023 01 26.
Article in English | MEDLINE | ID: mdl-36702820

ABSTRACT

The metabolic syndrome (MetS) is a clinical manifestation strongly associated with cardiovascular disease, the main cause of death worldwide. In view of this scenario, many therapeutic proposals have appeared in order to optimize the treatment of individuals with MetS, including the practice of exercise training (ET) and the consumption of okra (O). The aim of the present study was to evaluate the effect of O consumption and/or ET in animals with MetS. In all, 32 male Zucker rats (fa/fa) at 10 weeks old were randomly distributed into four groups of 8 animals each: MetS, MetS+O, MetS+ET and MetS+ET+O, and 8 lean Zucker rats (fa/ +) comprised the control group. Okra was administered by orogastric gavage 2x/day (morning and night, 100 mg/kg), 5 days/week, for 6 weeks. The ET was performed on a treadmill 1x/day (afternoon), 5 days/week, 60 min/day, in an intensity of 70% of maximal capacity, for the same days of O treatment. It was found that, O consumption alone was able to promote improved insulin sensitivity (MetS 93.93 ± 8.54 mg/dL vs. MetS+O 69.95 ± 18.7 mg/dL, p ≤ 0.05, d = 1.65, CI = 50.32 -89.58, triglyceride reduction (MetS 492.9 ± 97.8 mg/dL vs. MetS+O 334.9 ± 98.0 mg/dL, p ≤ 0.05, d = 1.61, CI = 193.2-398.7). In addition, it promoted a reduction in systolic blood pressure (MetS 149.0 ± 9.3 mmHg vs. MetS+O 132.0 ± 11.4 mmHg, p ≤ 0.05, d = 1.63, CI = 120-140), prevented an increase in cardiac collagen (MetS 12.60 ± 2.08% vs. MetS+O 7.52 ± 0.77%, p ≤ 0.05, d = 3.24, CI = 6.56-8.49). When associated with ET, the results were similar. Thus, we conclude that O consumption combined or not with aerobic ET can have a protective effect on the cardiac tissue of rats with MetS.


Subject(s)
Abelmoschus , Insulin Resistance , Metabolic Syndrome , Animals , Male , Rats , Dietary Supplements , Metabolic Syndrome/therapy , Rats, Zucker
2.
PLoS One ; 17(6): e0269418, 2022.
Article in English | MEDLINE | ID: mdl-35657982

ABSTRACT

The complications of Metabolic Syndrome (MetS) include kidney disease, and most dialysis patients are diagnosed with MetS. The benefit of exercise training (ET) for MetS treatment is already well defined in the literature, but the antidiabetic and antihyperlipidemic benefits of okra (O) have been discovered only recently. The aim of this study was to evaluate the effects of O and/or ET supplementation on renal function and histology; serum urea and creatinine value; inflammation (IL-6, IL-10, TNF-α) and oxidative stress in renal tissue. For this, 32 Zucker rats (fa/fa) were randomly separated into four groups of 8 animals each: Metabolic Syndrome (MetS), MetS + Okra (MetS + O), MetS + Exercise Training (MetS + ET), and MetS + Exercise Training and Okra (MetS + ET + O), and 8 Zucker lean (fa/+) rats comprised the Control group (CTL). Okra was administered by orogastric gavage 2x/day (morning and night, 100 mg/kg) and ET performed on the treadmill, at moderate intensity, 1h/day, 5x/week for 6 weeks. Although the renal function was not altered, the animals with MetS showed greater fibrotic deposition accompanied by a worse stage of renal injury, in addition to increased kidney weight. Although all interventions were beneficial in reducing fibrosis, only ET combined with O was able to improve the degree of renal tissue impairment. ET improved the anti-inflammatory status and reduced nitrite levels, but the combination of ET and O was more beneficial as regards catalase activity. Okra consumption alone did not promote changes in inflammatory cytokines and oxidative stress in the kidney. In conclusion, ET combined or not with O seems to be beneficial in preventing the progression of renal disease when renal function is not yet altered.


Subject(s)
Abelmoschus , Kidney Diseases , Metabolic Syndrome , Animals , Kidney/metabolism , Kidney Diseases/metabolism , Kidney Diseases/prevention & control , Metabolic Syndrome/complications , Metabolic Syndrome/therapy , Oxidative Stress , Rats , Rats, Zucker
3.
Neurosci Lett ; 764: 136239, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34509569

ABSTRACT

BACKGROUND: The consumption of a high-fat diet (HFD) during pregnancy and perinatal periods can lead to long-term effects in the offspring central nervous system, affecting pathways related to neurogenesis and behavior, and increasing predispositions to depressive and anxiety-like behaviors. Thus, this study aimed to investigate the effects of a maternal HFD on the hippocampi of adult offspring and behaviors related to anxiety and depression. METHODS: The protein and mRNA expression of the brain-derived neurotrophic factor (BDNF), Mash1, Notch1, Hes5, serotonin transporter (SERT), 5-HT1A serotonergic receptor (5-HT1A), tryptophan hydroxylase 2 (TPH2, key enzyme of serotonin synthesis), JNK and pJNK were analyzed in the hippocampi of male Swiss mice. Hippocampal serotonin levels were measured using ELISA. The lipid peroxidation, total oxidant status, total antioxidant status, and GSH/GSSG were evaluated as oxidative stress measures. For the behavioral analysis, the open field, elevated plus maze, and sucrose preference tests were used. RESULTS: Maternal HFD led to increased body weight in dams and their offspring, as well as altered body composition and LDL levels in the offspring. There were no alterations in oxidative stress or JNK phosphorylation. Hippocampal Mash1 and BDNF expression were altered in HFD offspring. The HFD offspring exhibited anhedonic behavior. CONCLUSION: These findings suggest that maternal HFD leads to long-term alterations in the offspring's neurotrophic systems, impairing their behavior.


Subject(s)
Anhedonia , Diet, High-Fat/adverse effects , Gestational Weight Gain , Hippocampus/metabolism , Prenatal Exposure Delayed Effects/psychology , Animals , Basic Helix-Loop-Helix Transcription Factors/analysis , Basic Helix-Loop-Helix Transcription Factors/metabolism , Brain-Derived Neurotrophic Factor/analysis , Brain-Derived Neurotrophic Factor/metabolism , Disease Models, Animal , Female , Humans , Male , Maternal Nutritional Physiological Phenomena , Mice , Pregnancy , Prenatal Exposure Delayed Effects/etiology , Prenatal Exposure Delayed Effects/metabolism
4.
Int. j. cardiovasc. sci. (Impr.) ; 31(6): 610-618, nov.- dez. 2018. tab
Article in English | LILACS | ID: biblio-979902

ABSTRACT

Background: Type 1 diabetes mellitus (DM1) can cause damage to several physiological systems.Objectives: To compare and characterize the effects of aerobic exercise training (ET) performed by swimming with those of ET performed on a treadmill on the skeletal muscle and heart of rats with DM1. Methods: 41 male Wistar rats were randomized into four groups: nondiabetic control (CTR), diabetic control (DMC), diabetic trained on the treadmill (DMT), and diabetic trained by swimming (DMS). The trained groups performed aerobic exercise training for 8 weeks, 5 times a week, 60 min per day. Exercise tolerance, blood glucose, body weight, wet weight of the skeletal muscles and left ventricle (LV), muscle glycogen, cross-sectional area of skeletal muscles, and cross-sectional diameter and collagen volume fraction of the LV were evaluated.Results: The results were expressed as mean ± standard deviation of the mean and submitted to two-way ANOVA with post-hoc Bonferroni test. Aerobic ET protocols applied to animals with DM1, regardless of the ergometer, showed satisfactory results (p < 0.05) when compared to the control groups: improved exercise tolerance, increased glycogen content of the soleus and extensor digitorum longus (EDL) muscles and increased cross-sectional diameter of the left ventricular cardiomyocytes. In some variables, such as exercise tolerance and cross-sectional area of the soleus and EDL muscles, DMT showed better results than DMS (p < 0.05). On the other hand, DMS showed increased cross-sectional diameter of cardiomyocytes when compared with the DMT group. Conclusion: Both aerobic ET protocols offered benefits to animals with diabetes; however, due to the specific characteristics of each modality, different physiological adaptations were observed between the trained groups


Subject(s)
Animals , Rats , Swimming , Exercise , Rats, Wistar , Diabetes Mellitus , Exercise Test , Body Weight , Data Interpretation, Statistical , Muscle, Skeletal , Guidelines as Topic , Models, Animal , Myocytes, Cardiac/physiology , Glycemic Index , Physical Exertion
5.
Arq Bras Cardiol ; 108(6): 539-545, 2017.
Article in English, Portuguese | MEDLINE | ID: mdl-28562833

ABSTRACT

BACKGROUND:: Baroreceptors act as regulators of blood pressure (BP); however, its sensitivity is impaired in hypertensive patients. Among the recommendations for BP reduction, exercise training has become an important adjuvant therapy in this population. However, there are many doubts about the effects of resistance exercise training in this population. OBJECTIVE:: To evaluate the effect of resistance exercise training on BP and baroreceptor sensitivity in spontaneously hypertensive rats (SHR). METHOD:: Rats SHR (n = 16) and Wistar (n = 16) at 8 weeks of age, at the beginning of the experiment, were randomly divided into 4 groups: sedentary control (CS, n = 8); trained control (CT, n = 8); sedentary SHR (HS, n = 8) and trained SHR (HT, n = 8). Resistance exercise training was performed in a stairmaster-type equipment (1.1 × 0.18 m, 2 cm between the steps, 80° incline) with weights attached to their tails, (5 days/week, 8 weeks). Baroreceptor reflex control of heart rate (HR) was tested by loading/unloading of baroreceptors with phenylephrine and sodium nitroprusside. RESULTS:: Resistance exercise training increased the soleus muscle mass in SHR when compared to HS (HS 0.027 ± 0.002 g/mm and HT 0.056 ± 0.003 g/mm). Resistance exercise training did not alter BP. On the other hand, in relation to baroreflex sensitivity, bradycardic response was improved in the TH group when compared to HS (HS -1.3 ± 0.1 bpm/mmHg and HT -2.6 ± 0.2 bpm/mmHg) although tachycardia response was not altered by resistance exercise (CS -3.3 ± 0.2 bpm/mmHg, CT -3.3 ± 0.1 bpm/mmHg, HS -1.47 ± 0.06 bpm/mmHg and HT -1.6 ± 0.1 bpm/mmHg). CONCLUSION:: Resistance exercise training was able to promote improvements on baroreflex sensitivity of SHR rats, through the improvement of bradycardic response, despite not having reduced BP. FUNDAMENTO:: Os barorreceptores atuam como reguladores da pressão arterial (PA); no entanto, sua sensibilidade encontra-se prejudicada em pacientes hipertensos. Dentre as recomendações para a redução da PA, o treinamento físico tem se tornado um importante adjunto na terapia dessa população. Porém, ainda há diversos questionamentos sobre os efeitos de treinamento físico resistido nessa população. OBJETIVO:: Avaliar o efeito do treinamento físico resistido na PA e na sensibilidade de barorreceptores em ratos espontaneamente hipertensos (SHR). MÉTODO:: Ratos SHR (n = 16) e Wistar (n = 16) com 08 semanas de idade foram aleatoriamente divididos em 4 grupos: controle sedentário (CS, n = 8); controle treinado (CT, n = 8); SHR sedentário (HS, n = 8) e SHR treinado (HT, n = 8). O treinamento físico foi realizado em aparato com degraus (1,1 × 0,18 m, 2 cm entre os degraus, 80° inclinação) com peso fixado na cauda, (5 vezes por semana durante 8 semanas). O controle barorreflexo da frequência cardíaca (FC) foi testado com estímulos de fenilefrina e nitroprussiato de sódio. RESULTADOS:: O treinamento resistido foi capaz de aumentar a massa muscular do sóleo em ratos SHR (HS 0,027 ± 0,002 g/mm e HT 0,056 ± 0,003 g/mm). Não houve alteração da PA com o treinamento. Por outro lado, houve melhora na resposta bradicárdica da sensibilidade barorreflexa no grupo HT (HS -1,3 ± 0,1 bpm/mmHg e HT -2,6 ± 0,2 bpm/mmHg), no entanto, a resposta taquicárdica não foi alterada pelo exercício resistido (CS -3,3 ± 0,2 bpm/mmHg, CT -3,3 ± 0,1 bpm/mmHg, HS -1,47 ± 0,06 e HT -1,6 ± 0,1). CONCLUSÃO:: O exercício físico resistido foi capaz de otimizar a sensibilidade barorreflexa dos ratos SHR por meio da melhora à resposta bradicárdica, apesar de não alterar a PA.


Subject(s)
Baroreflex/physiology , Hypertension/rehabilitation , Physical Conditioning, Animal/physiology , Resistance Training , Animals , Hypertension/physiopathology , Male , Rats , Rats, Inbred SHR , Rats, Wistar
6.
Arq. bras. cardiol ; 108(6): 539-545, June 2017. graf
Article in English | LILACS | ID: biblio-887887

ABSTRACT

Abstract Background: Baroreceptors act as regulators of blood pressure (BP); however, its sensitivity is impaired in hypertensive patients. Among the recommendations for BP reduction, exercise training has become an important adjuvant therapy in this population. However, there are many doubts about the effects of resistance exercise training in this population. Objective: To evaluate the effect of resistance exercise training on BP and baroreceptor sensitivity in spontaneously hypertensive rats (SHR). Method: Rats SHR (n = 16) and Wistar (n = 16) at 8 weeks of age, at the beginning of the experiment, were randomly divided into 4 groups: sedentary control (CS, n = 8); trained control (CT, n = 8); sedentary SHR (HS, n = 8) and trained SHR (HT, n = 8). Resistance exercise training was performed in a stairmaster-type equipment (1.1 × 0.18 m, 2 cm between the steps, 80° incline) with weights attached to their tails, (5 days/week, 8 weeks). Baroreceptor reflex control of heart rate (HR) was tested by loading/unloading of baroreceptors with phenylephrine and sodium nitroprusside. Results: Resistance exercise training increased the soleus muscle mass in SHR when compared to HS (HS 0.027 ± 0.002 g/mm and HT 0.056 ± 0.003 g/mm). Resistance exercise training did not alter BP. On the other hand, in relation to baroreflex sensitivity, bradycardic response was improved in the TH group when compared to HS (HS -1.3 ± 0.1 bpm/mmHg and HT -2.6 ± 0.2 bpm/mmHg) although tachycardia response was not altered by resistance exercise (CS -3.3 ± 0.2 bpm/mmHg, CT -3.3 ± 0.1 bpm/mmHg, HS -1.47 ± 0.06 bpm/mmHg and HT -1.6 ± 0.1 bpm/mmHg). Conclusion: Resistance exercise training was able to promote improvements on baroreflex sensitivity of SHR rats, through the improvement of bradycardic response, despite not having reduced BP.


Resumo Fundamento: Os barorreceptores atuam como reguladores da pressão arterial (PA); no entanto, sua sensibilidade encontra-se prejudicada em pacientes hipertensos. Dentre as recomendações para a redução da PA, o treinamento físico tem se tornado um importante adjunto na terapia dessa população. Porém, ainda há diversos questionamentos sobre os efeitos de treinamento físico resistido nessa população. Objetivo: Avaliar o efeito do treinamento físico resistido na PA e na sensibilidade de barorreceptores em ratos espontaneamente hipertensos (SHR). Método: Ratos SHR (n = 16) e Wistar (n = 16) com 08 semanas de idade foram aleatoriamente divididos em 4 grupos: controle sedentário (CS, n = 8); controle treinado (CT, n = 8); SHR sedentário (HS, n = 8) e SHR treinado (HT, n = 8). O treinamento físico foi realizado em aparato com degraus (1,1 × 0,18 m, 2 cm entre os degraus, 80° inclinação) com peso fixado na cauda, (5 vezes por semana durante 8 semanas). O controle barorreflexo da frequência cardíaca (FC) foi testado com estímulos de fenilefrina e nitroprussiato de sódio. Resultados: O treinamento resistido foi capaz de aumentar a massa muscular do sóleo em ratos SHR (HS 0,027 ± 0,002 g/mm e HT 0,056 ± 0,003 g/mm). Não houve alteração da PA com o treinamento. Por outro lado, houve melhora na resposta bradicárdica da sensibilidade barorreflexa no grupo HT (HS -1,3 ± 0,1 bpm/mmHg e HT -2,6 ± 0,2 bpm/mmHg), no entanto, a resposta taquicárdica não foi alterada pelo exercício resistido (CS -3,3 ± 0,2 bpm/mmHg, CT -3,3 ± 0,1 bpm/mmHg, HS -1,47 ± 0,06 e HT -1,6 ± 0,1). Conclusão: O exercício físico resistido foi capaz de otimizar a sensibilidade barorreflexa dos ratos SHR por meio da melhora à resposta bradicárdica, apesar de não alterar a PA.


Subject(s)
Animals , Male , Rats , Physical Conditioning, Animal/physiology , Baroreflex/physiology , Resistance Training , Hypertension/rehabilitation , Rats, Inbred SHR , Rats, Wistar , Hypertension/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...