Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Theory Comput ; 19(11): 3313-3323, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37227367

ABSTRACT

We present a method to compute the many-body real-time Green's function using an adaptive variational quantum dynamics simulation approach. The real-time Green's function involves the time evolution of a quantum state with one additional electron with respect to the ground state wave function that is first expressed as a linear-linear combination of state vectors. The real-time evolution and the Green's function are obtained by combining the dynamics of the individual state vectors in a linear combination. The use of the adaptive protocol enables us to generate compact ansatzes on-the-fly while running the simulation. In order to improve the convergence of spectral features, Padé approximants are applied to obtain the Fourier transform of the Green's function. We demonstrate the evaluation of the Green's function on an IBM Q quantum computer. As a part of our error mitigation strategy, we develop a resolution-enhancing method that we successfully apply on the noisy data from the real-quantum hardware.

2.
J Chem Theory Comput ; 16(10): 6256-6266, 2020 Oct 13.
Article in English | MEDLINE | ID: mdl-32877181

ABSTRACT

We develop a resource-efficient step-merged quantum imaginary time evolution approach (smQITE) to solve for the ground state of a Hamiltonian on quantum computers. This heuristic method features a fixed shallow quantum circuit depth along the state evolution path. We use this algorithm to determine the binding energy curves of a set of molecules, including H2, H4, H6, LiH, HF, H2O, and BeH2, and find highly accurate results. The required quantum resources of smQITE calculations can be further reduced by adopting the circuit form of the variational quantum eigensolver (VQE) technique, such as the unitary coupled cluster ansatz. We demonstrate that smQITE achieves a similar computational accuracy as VQE at the same fixed-circuit ansatz, without requiring a generally complicated high-dimensional nonconvex optimization. Finally, smQITE calculations are carried out on Rigetti quantum processing units, demonstrating that the approach is readily applicable on current noisy intermediate-scale quantum devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...