Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 229
Filter
1.
J Pediatr (Rio J) ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38823785

ABSTRACT

OBJECTIVE: This study aimed to investigate the prevalence of autism spectrum disorder and its possible correlations with clinical characteristics in patients with infantile epileptic spasms syndrome in a single center in Brazil. METHODS: This retrospective cross-sectional study examined 53 children with the diagnosis of infantile epileptic spasms syndrome prior to an autism spectrum disorder assessment. Participants were divided into two groups based on the presence or absence of autism spectrum disorder. Available variables (sex, medications, median age at onset of infantile epileptic spasms syndrome, and presence of comorbidities) were compared using Mann-Whitney U or chi-square tests. RESULTS: Among the included patients, 12 (23 %) were diagnosed with autism spectrum disorder, corresponding to a relative risk of 0.29 (95 % confidence interval 0.174-0.492). The age at the first seizure ranged from 3 to 15 months, with a mean of 6.65 months. This age significantly differed between participants with autism spectrum disorder (10.58 months) and those without (5.43 months), p<0.001. CONCLUSION: Children with infantile epileptic spasms syndrome have a higher risk of being diagnosed with autism spectrum disorder. Later age of onset and period of spasm occurrence might be predisposing risk factors.

2.
Acta Biomater ; 181: 98-116, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697382

ABSTRACT

The emergence of antibiotic-resistant bacteria is a serious threat to public health. Antimicrobial peptides (AMP) are a powerful alternative to antibiotics due to their low propensity to induce bacterial resistance. However, cytotoxicity and short half-lives have limited their clinical translation. To overcome these problems, AMP conjugation has gained relevance in the biomaterials field. Nevertheless, few studies describe the influence of conjugation on enzymatic protection, mechanism of action and antimicrobial efficacy. This review addresses this gap by providing a detailed comparison between conjugated and soluble AMP. Additionally, commonly employed chemical reactions and factors to consider when promoting AMP conjugation are reviewed. The overall results suggested that AMP conjugated onto biomaterials are specifically protected from degradation by trypsin and/or pepsin. However, sometimes, their antimicrobial efficacy was reduced. Due to limited conformational freedom in conjugated AMP, compared to their soluble forms, they appear to act initially by creating small protuberances on bacterial membranes that may lead to the alteration of membrane potential and/or formation of holes, triggering cell death. Overall, AMP conjugation onto biomaterials is a promising strategy to fight infection, particularly associated to the use of medical devices. Nonetheless, some details need to be addressed before conjugated AMP reach clinical practice. STATEMENT OF SIGNIFICANCE: Covalent conjugation of antimicrobial peptides (AMP) has been one of the most widely used strategies by bioengineers, in an attempt to not only protect AMP from proteolytic degradation, but also to prolong their residence time at the target tissue. However, an explanation for the mode of action of conjugated AMP is still lacking. This review extensively gathers works on AMP conjugation and puts forward a mechanism of action for AMP when conjugated onto biomaterials. The implications of AMP conjugation on antimicrobial activity, cytotoxicity and resistance to proteases are all discussed. A thorough review of commonly employed chemical reactions for this conjugation is also provided. Finally, details that need to be addressed for conjugated AMP to reach clinical practice are discussed.


Subject(s)
Antimicrobial Peptides , Bacteria , Biocompatible Materials , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Bacteria/drug effects , Humans , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry
3.
Bioorg Med Chem ; 104: 117714, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38582046

ABSTRACT

4,9-diaminoacridines with reported antiplasmodial activity were coupled to different trans-cinnamic acids, delivering a new series of conjugates inspired by the covalent bitherapy concept. The new compounds were more potent than primaquine against hepatic stages of Plasmodium berghei, although this was accompanied by cytotoxic effects on Huh-7 hepatocytes. Relevantly, the conjugates displayed nanomolar activities against blood stage P. falciparum parasites, with no evidence of hemolytic effects below 100 µM. Moreover, the new compounds were at least 25-fold more potent than primaquine against P. falciparum gametocytes. Thus, the new antiplasmodial hits disclosed herein emerge as valuable templates for the development of multi-stage antiplasmodial drug candidates.


Subject(s)
Antimalarials , Cinnamates , Malaria, Falciparum , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Primaquine/pharmacology , Disclosure , Plasmodium falciparum , Malaria, Falciparum/drug therapy , Plasmodium berghei
4.
J Telemed Telecare ; : 1357633X241245160, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38659374

ABSTRACT

INTRODUCTION: Using standardized scales to assess motor development via telemedicine can increase access for low-income populations. Our aim was to verify the agreement and feasibility between remotely and synchronously applying the Alberta Infant Motor Scale (AIMS) and the in-person format. METHODS: This was a concordance study, with 77 typical infants aged 4-18 months (mean = 13 months). The AIMS was applied remote via video calls and face-to-face. We applied a questionnaire to caregivers to verify feasibility. RESULTS: There was a high level of agreement between the remote and in-person assessments, with intraclass correlation coefficients above 0.98 and low standard error measure values (<1 item for each posture, <2 items for the total raw score, and =5% for the normative score). The smallest detectable change was between 1.67 and 2.45 for each posture, 3 for the total raw score, and 6% for the normative score. The Bland-Altman analysis showed low bias with the mean difference close to zero (<0.80) and low error with little dispersion of the difference points around the mean. Caregivers' perspectives on the synchronous remote assessment were positive, with good quality, clear information during the assessment, and comfort with the method. DISCUSSION: The synchronous remote application of the AIMS may be an alternative for families without access to in-person services that assess motor development.

5.
ACS Appl Mater Interfaces ; 16(12): 14533-14547, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38482690

ABSTRACT

Surface bioconjugation of antimicrobial peptides (AMP) onto nanoparticles (AMP-NP) is a complex, multistep, and time-consuming task. Herein, a microfluidic system for the one-pot production of AMP-NP was developed. Norbornene-modified chitosan was used for NP production (NorChit-NP), and thiolated-AMP was grafted on their surface via thiol-norbornene "photoclick" chemistry over exposure of two parallel UV LEDs. The MSI-78A was the AMP selected due to its high activity against a high priority (level 2) antibiotic-resistant gastric pathogen: Helicobacter pylori (H. pylori). AMP-NP (113 ± 43 nm; zeta potential 14.3 ± 7 mV) were stable in gastric settings without a cross-linker (up to 5 days in pH 1.2) and bactericidal against two highly pathogenic H. pylori strains (1011 NP/mL with 96 µg/mL MSI-78A). Eradication was faster for H. pylori 26695 (30 min) than for H. pylori J99 (24 h), which was explained by the lower minimum bactericidal concentration of soluble MSI-78A for H. pylori 26695 (32 µg/mL) than for H. pylori J99 (128 µg/mL). AMP-NP was bactericidal by inducing H. pylori cell membrane alterations, intracellular reorganization, generation of extracellular vesicles, and leakage of cytoplasmic contents (transmission electron microscopy). Moreover, NP were not cytotoxic against two gastric cell lines (AGS and MKN74, ATCC) at bactericidal concentrations. Overall, the designed microfluidic setup is a greener, simpler, and faster approach than the conventional methods to obtain AMP-NP. This technology can be further explored for the bioconjugation of other thiolated-compounds.


Subject(s)
Chitosan , Helicobacter pylori , Nanoparticles , Chitosan/pharmacology , Chitosan/chemistry , Microfluidics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nanoparticles/chemistry , Norbornanes , Antimicrobial Peptides
6.
RSC Adv ; 14(9): 6253-6261, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38375018

ABSTRACT

Acridines are one of the most important nitrogen-containing heterocycle systems and have many applications in the therapeutic field. However, the synthesis of acridine-based scaffolds is not always straightforward. Herein, we report the optimization of two multi-step synthetic routes towards 4,9-diaminoacridines and 4-aminoacridines, which have shown promising antiplasmodial properties. The improved synthesis pathways make use of greener, simpler, and more efficient methods, with less reaction steps and increased overall yields, which were doubled in some cases. These are impactful results towards future approaches to the chemical synthesis of acridine-based compounds.

7.
Braz J Microbiol ; 55(1): 933-941, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38305952

ABSTRACT

Infectious diseases are one of the most concerning threats to maned wolves (Chrysocyon brachyurus) due to the potential impact on free-ranging populations. The species is currently classified as vulnerable according to the national list of threatened species and occurs mainly in open habitats, such as the Cerrado, a tropical savannah, which comprises its main distribution area in Brazil. In the northeastern region, it occurs in the Cerrado of Bahia, Piauí, Maranhão, and Tocantins states. Therefore, this study aimed to investigate the occurrence of infectious agents in Chrysocyon brachyurus through an epidemiological assessment of free-ranging individuals in western Bahia, specifically in the Barreiras microregion, a Cerrado area intensely fragmented and anthropized by agricultural activity. Eleven specimens were evaluated for serological titration, antigen research, and genetic material research for canine distemper virus (CDV), canine parvovirus (CPV), adenovirus-canine-type 1 (CAdV-1), canine coronavirus (CCoV), Leptospira interrogans and Toxoplasma gondii from 2020 to 2022. In addition to maned wolves, domestic dogs were also evaluated and tested. All maned wolves (100%) evaluated by the dot-ELISA technique exhibited immunoglobulin M (IgM) and seven (64%) exhibited immunoglobulin G (IgG) against CDV and CPV, while 100% exhibited IgG against CDV when using the immunochromatographic technique. Regarding CAdV-1, 90% were seropositive for IgG, while 64% exhibited IgG against T. gondii. Nine dogs from the region were also sampled, and all (100%) exhibited IgM and IgG against CDV and CPV. For IgG against T. gondii and against CAdV-1, 90% of the animals were seropositive. Molecular evaluation yielded negative results for all maned wolves and dogs assessed for CAdV-1, CDV, and T. gondii, as well as the CCoV antigen. These data indicate the occurrence of viral agents and Toxoplasma gondii in maned wolves and dogs, suggesting circulation in both populations.


Subject(s)
Canidae , Distemper Virus, Canine , Parvovirus, Canine , Toxoplasma , Wolves , Animals , Dogs , Brazil/epidemiology , Immunoglobulin G , Toxoplasma/genetics , Immunoglobulin M
8.
J Appl Physiol (1985) ; 136(1): 189-198, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38059293

ABSTRACT

Aging is accompanied by considerable deterioration of homeostatic systems, such as autonomic imbalance characterized by heightened sympathetic activity, lower parasympathetic tone, and depressed heart rate (HR) variability, which are aggravated by hypertension. Here, we hypothesized that these age-related deficits in aged hypertensive rats can be ameliorated by exercise training, with benefits to the cardiovascular system. Therefore, male 22-mo-old spontaneously hypertensive rats (SHRs) and age-matched Wistar Kyoto (WKY) submitted to moderate-intensity exercise training (T) or kept sedentary (S) for 8 wk were evaluated for hemodynamic/autonomic parameters, baroreflex sensitivity, cardiac sympathetic/parasympathetic tone and analysis of dopamine ß-hydroxylase (DBH+) and oxytocin (OT+) pathways of autonomic brain nuclei. Aged SHR-S versus WKY-S exhibited elevated mean arterial pressure (MAP: +51%) and HR (+20%), augmented pressure/HR variability, no cardiac vagal tone, and depressed reflex control of the heart (HR range, -28%; gain, -49%). SHR-T exhibited a lower resting HR, a partial reduction in the MAP (-14%), in the pressure/HR variabilities, and restored parasympathetic modulation, with improvement of baroreceptor reflex control when compared with SHR-S. Exercise training increased the ascending DBH+ projections conveying peripheral information to the paraventricular nucleus of hypothalamus (PVN), augmented the expression of OT+ neurons, and reduced the density of DBH+ neurons in the rostral ventrolateral medulla (RVLM) of SHR-T. Data indicate that exercise training induces beneficial neuroplasticity in brain autonomic circuitry, and it is highly effective to restore the parasympathetic tone, and attenuation of age-related autonomic imbalance and baroreflex dysfunction, thus conferring long-term benefits for cardiovascular control in aged hypertensive individuals.NEW & NOTEWORTHY Exercise training reduces high blood pressure and cardiovascular autonomic modulation in aged hypertensive rats. The dysfunction in the baroreflex sensitivity and impaired parasympathetic tone to the heart of aged hypertensive rats are restored by exercise training. Exercise induces beneficial neuroplasticity in the brain nuclei involved with autonomic control of cardiovascular function of aged hypertensive rats.


Subject(s)
Baroreflex , Hypertension , Rats , Male , Animals , Baroreflex/physiology , Blood Pressure/physiology , Rats, Inbred WKY , Rats, Inbred SHR , Heart Rate/physiology , Neuronal Plasticity
9.
J Bras Pneumol ; 49(5): e20230036, 2023.
Article in English, Portuguese | MEDLINE | ID: mdl-37909550

ABSTRACT

OBJECTIVE: To compare patients with chronic hypersensitivity pneumonitis (cHP) and controls with normal spirometry in terms of their sleep characteristics, as well as to establish the prevalence of obstructive sleep apnea (OSA) and nocturnal hypoxemia. Secondary objectives were to identify factors associated with OSA and nocturnal hypoxemia; to correlate nocturnal hypoxemia with the apnea-hypopnea index (AHI) and lung function, as well as with resting SpO2, awake SpO2, and SpO2 during exercise; and to evaluate the discriminatory power of sleep questionnaires to predict OSA. METHODS: A total of 40 patients with cHP (cases) were matched for sex, age, and BMI with 80 controls, the ratio of controls to cases therefore being = 2:1. The STOP-Bang questionnaire, the Epworth Sleepiness Scale (ESS), the Pittsburgh Sleep Quality Index, the Berlin questionnaire and the Neck circumference, obesity, Snoring, Age, and Sex (NoSAS) score were applied to all cases, and both groups underwent full-night polysomnography. RESULTS: The patients with cHP had longer sleep latency, lower sleep efficiency, a lower AHI, a lower respiratory disturbance index, fewer central apneas, fewer mixed apneas, and fewer hypopneas than did the controls. The patients with cHP had significantly lower nocturnal SpO2 values, the percentage of total sleep time spent below an SpO2 of 90% being higher than in controls (median = 4.2; IQR, 0.4-32.1 vs. median = 1.0; IQR, 0.1-5.8; p = 0.01). There were no significant differences between cases with and without OSA regarding the STOP-Bang questionnaire, NoSAS, and ESS scores. CONCLUSIONS: The prevalence of OSA in cHP patients (cases) was high, although not higher than that in controls with normal spirometry. In addition, cases had more hypoxemia during sleep than did controls. Our results suggest that sleep questionnaires do not have sufficient discriminatory power to identify OSA in cHP patients.


Subject(s)
Alveolitis, Extrinsic Allergic , Sleep Apnea, Obstructive , Humans , Case-Control Studies , Sleep , Sleep Apnea, Obstructive/epidemiology , Sleep Apnea, Obstructive/complications , Surveys and Questionnaires , Hypoxia , Alveolitis, Extrinsic Allergic/epidemiology
10.
Biotechnol Adv ; 68: 108223, 2023 11.
Article in English | MEDLINE | ID: mdl-37536466

ABSTRACT

Agricultural systems are in need of low-cost, safe antibiotics to protect crops from pests and diseases. Peptaibiotics, a family of linear, membrane-active, amphipathic polypeptides, have been shown to exhibit antibacterial, antifungal, and antiviral activity, and to be inducers of plant resistance against a wide range of phytopathogens. Peptaibiotics belong to the new generation of alternatives to agrochemicals, aligned with the United Nations Sustainable Development Goals and the One Health approach toward ensuring global food security and safety. Despite that, these fungi-derived, non-ribosomal peptides remain surprisingly understudied, especially in agriculture, where only a small number has been tested against a reduced number of phytopathogens. This lack of adoption stems from peptaibiotics' poor water solubility and the difficulty to synthesize and purify them in vitro, which compromises their delivery and inclusion in formulations. In this review, we offer a comprehensive analysis of peptaibiotics' classification, biosynthesis, relevance to plant protection, and mode of action against phytopathogens, along with the techniques enabling researchers to extract, purify, and elucidate their structure, and the databases holding such valuable data. It is also discussed how chemical synthesis and ionic liquids could increase their solubility, how genetic engineering and epigenetics could boost in vitro production, and how omics can reduce screenings' workload through in silico selection of the best candidates. These strategies could turn peptaibiotics into effective, ultra-specific, biodegradable tools for phytopathogen control.


Subject(s)
Anti-Bacterial Agents , Peptides , Peptides/pharmacology , Anti-Bacterial Agents/pharmacology , Fungal Proteins , Crops, Agricultural
11.
Zoo Biol ; 42(6): 789-796, 2023.
Article in English | MEDLINE | ID: mdl-37466265

ABSTRACT

The global population of Dicotyles tajacu (Linnaeus, 1758) (Cetartiodactyla: Tayassuidae), commonly known as the collared peccary and distributed in the Neotropics, is currently in decline due to anthropogenic pressures. In this study, five microsatellite loci were used to genetically characterize a group of 20 captive-born collared peccaries intended for reintroduction. This study aimed to evaluate the genetic diversity and relatedness of captive individuals using microsatellite markers. The genetic data generated were used to evaluate the viability of the reintroduction and to propose measures for the management and conservation of this species. In this study, we found relatively high genetic diversity indices, indicating that the group was genetically diverse. Inbreeding coefficients with negative values were observed, indicating an excess of alleles in heterozygosis and an absence of inbreeding. One locus showed deviation from Hardy-Weinberg equilibrium, which may have been caused by the mixing of individuals from different origins. Relatedness analysis indicated that some individuals were highly related, with coefficients indicating they may be first-degree relatives. Our findings indicate that the studied group has enough genetic diversity to be released into nature, but the high individual relatedness found would require the adoption of strategies after the release of animals in the wild to ensure their persistence.


Subject(s)
Animals, Zoo , Artiodactyla , Animals , Genotype , Animals, Zoo/genetics , Artiodactyla/genetics , Microsatellite Repeats/genetics , High-Throughput Nucleotide Sequencing , Genetic Variation
13.
Eur J Med Chem ; 258: 115575, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37390511

ABSTRACT

A novel family of 4-aminoacridine derivatives was obtained by linking this heteroaromatic core to different trans-cinnamic acids. The 4-(N-cinnamoylbutyl)aminoacridines obtained exhibited in vitro activity in the low- or sub-micromolar range against (i) hepatic stages of Plasmodium berghei, (ii) erythrocytic forms of Plasmodium falciparum, and (iii) early and mature gametocytes of Plasmodium falciparum. The most active compound, having a meta-fluorocinnamoyl group linked to the acridine core, was 20- and 120-fold more potent, respectively, against the hepatic and gametocyte stages of Plasmodium infection than the reference drug, primaquine. Moreover, no cytotoxicity towards mammalian and red blood cells at the concentrations tested was observed for any of the compounds under investigation. These novel conjugates represent promising leads for the development of new multi-target antiplasmodials.


Subject(s)
Aminoacridines , Antimalarials , Animals , Aminacrine , Antimalarials/pharmacology , Mammals , Plasmodium berghei , Plasmodium falciparum , Primaquine
14.
Int J Hyperthermia ; 40(1): 2222941, 2023.
Article in English | MEDLINE | ID: mdl-37344380

ABSTRACT

BACKGROUND: Neuroblastoma (NB) is the most common extracranial solid tumor of childhood, and high-risk disease is resistant to intensive treatment. Histotripsy is a focused ultrasound therapy under development for tissue ablation via bubble activity. The goal of this study was to assess outcomes of histotripsy ablation in a xenograft model of high-risk NB. METHODS: Female NCr nude mice received NGP-luciferase cells intrarenally. Under ultrasound image guidance, histotripsy pulses were applied over a distance of 4-6 mm within the tumors. Bioluminescence indicative of tumor viability was quantified before, immediately after, and 24 h after histotripsy exposure. Tumors were immunostained to assess apoptosis (TUNEL), endothelium (endomucin), pericytes (αSMA), hypoxia (pimonidazole), vascular endothelial growth factor A (VEGFA), and platelet-derived growth factor-B (PDGF-B). The apoptotic cytokine TNFα and its downstream effector cleaved caspase-3 (c-casp-3) were assessed with SDS-PAGE. RESULTS: Histotripsy induced a 50% reduction in bioluminescence compared to untreated controls, with an absence of nuclei in the treatment core surrounded by a dense rim of TUNEL-positive cells. Tumor regions not targeted by histotripsy also showed an increase in TUNEL staining density. Increased apoptosis in histotripsy samples was consistent with increases in TNFα and c-casp-3 relative to controls. Treated tumors exhibited a decrease in hypoxia, VEGF, PDGF-B, and pericyte coverage of vasculature compared to control samples. Further, increases in vasodilation were found in histotripsy-treated specimens. CONCLUSIONS: In addition to ablative effects, histotripsy was found to drive tumor apoptosis through intrinsic pathways, altering blood vessel architecture, and reducing hypoxia.


Subject(s)
High-Intensity Focused Ultrasound Ablation , Neuroblastoma , Animals , Mice , Humans , Female , Vascular Endothelial Growth Factor A , Tumor Necrosis Factor-alpha , Heterografts , Mice, Nude , Neuroblastoma/therapy , Hypoxia , Apoptosis , High-Intensity Focused Ultrasound Ablation/methods
15.
Insects ; 14(6)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37367349

ABSTRACT

The spotted-wing drosophila (Drosophila suzukii) is a polyphagous pest that causes severe damage and economic losses to soft-skinned fruit production. Current control methods are dominated by inefficient cultural practices and broad-spectrum insecticides that, in addition to having toxic effects on non-target organisms, are becoming less effective due to acquired resistance. The increasing awareness of the real impact of insecticides on health and the environment has promoted the exploration of new insecticidal compounds, addressing novel molecular targets. This study explores the efficacy of two orally delivered spider venom peptides (SVPs), J-atracotoxin-Hv1c (Hv1c) and µ-theraphotoxin-Hhn2b (TRTX), to manage D. suzukii, through survival assays and the evaluation of gene expression associated with detoxification pathways. Treatment with TRTX at 111.5 µM for 48 h enhanced fly longevity compared with the control group. Gene expression analysis suggests that detoxification and stress-related mechanisms, such as expression of P450 proteins and apoptotic stimuli signaling, are triggered in D. suzukii flies in response to these treatments. Our results highlight the potential interest of SVPs to control this pest, shedding light on how to ultimately develop improved target-specific formulations.

16.
Pharmaceutics ; 15(5)2023 May 16.
Article in English | MEDLINE | ID: mdl-37242752

ABSTRACT

It is key to fight bacterial adhesion to prevent biofilm establishment on biomaterials. Surface immobilization of antimicrobial peptides (AMP) is a promising strategy to avoid bacterial colonization. This work aimed to investigate whether the direct surface immobilization of Dhvar5, an AMP with head-to-tail amphipathicity, would improve the antimicrobial activity of chitosan ultrathin coatings. The peptide was grafted by copper-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry by either its C- or N- terminus to assess the influence of peptide orientation on surface properties and antimicrobial activity. These features were compared with those of coatings fabricated using previously described Dhvar5-chitosan conjugates (immobilized in bulk). The peptide was chemoselectively immobilized onto the coating by both termini. Moreover, the covalent immobilization of Dhvar5 by either terminus enhanced the antimicrobial effect of the chitosan coating by decreasing colonization by both Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria. Relevantly, the antimicrobial performance of the surface on Gram-positive bacteria depended on how Dhvar5-chitosan coatings were produced. An antiadhesive effect was observed when the peptide was grafted onto prefabricated chitosan coatings (film), and a bactericidal effect was exhibited when coatings were prepared from Dhvar5-chitosan conjugates (bulk). This antiadhesive effect was not due to changes in surface wettability or protein adsorption but rather depended on variations in peptide concentration, exposure, and surface roughness. Results reported in this study show that the antibacterial potency and effect of immobilized AMP vary greatly with the immobilization procedure. Overall, independently of the fabrication protocol and mechanism of action, Dhvar5-chitosan coatings are a promising strategy for the development of antimicrobial medical devices, either as an antiadhesive or contact-killing surface.

17.
Int J Biol Macromol ; 242(Pt 2): 124745, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37150376

ABSTRACT

Malaria, leishmaniasis and Chagas disease are vector-borne protozoal infections with a disproportionately high impact on the most fragile societies in the world, and despite malaria-focused research gained momentum in the past two decades, both trypanosomiases and leishmaniases remain neglected tropical diseases. Affordable effective drugs remain the mainstay of tackling this burden, but toxicicty, inneficiency against later stage disease, and drug resistance issues are serious shortcomings. One strategy to overcome these hurdles is to get new therapeutics or inspiration in nature. Indeed, snake venoms have been recognized as valuable sources of biomacromolecules, like peptides and proteins, with antiprotozoal activity. This review highlights major snake venom components active against at least one of the three aforementioned diseases, which include phospholipases A2, metalloproteases, L-amino acid oxidases, lectins, and oligopeptides. The relevance of this repertoire of biomacromolecules and the bottlenecks in their clinical translation are discussed considering approaches that should increase the success rate in this arduous task. Overall, this review underlines how venom-derived biomacromolecules could lead to pioneering antiprotozoal treatments and how the drug landscape for neglected diseases may be revolutionized by a closer look at venoms. Further investigations on poorly studied venoms is needed and could add new therapeutics to the pipeline.


Subject(s)
Chagas Disease , Leishmaniasis , Malaria , Humans , Snake Venoms/chemistry , Peptides/pharmacology , Chagas Disease/drug therapy , Leishmaniasis/drug therapy
18.
Viruses ; 15(4)2023 04 06.
Article in English | MEDLINE | ID: mdl-37112903

ABSTRACT

The Nucleocapsid (N) protein is highlighted as the main target for COVID-19 diagnosis by antigen detection due to its abundance in circulation early during infection. However, the effects of the described mutations in the N protein epitopes and the efficacy of antigen testing across SARS-CoV-2 variants remain controversial and poorly understood. Here, we used immunoinformatics to identify five epitopes in the SARS-CoV-2 N protein (N(34-48), N(89-104), N(185-197), N(277-287), and N(378-390)) and validate their reactivity against samples from COVID-19 convalescent patients. All identified epitopes are fully conserved in the main SARS-CoV-2 variants and highly conserved with SARS-CoV. Moreover, the epitopes N(185-197) and N(277-287) are highly conserved with MERS-CoV, while the epitopes N(34-48), N(89-104), N(277-287), and N(378-390) are lowly conserved with common cold coronaviruses (229E, NL63, OC43, HKU1). These data are in accordance with the observed conservation of amino acids recognized by the antibodies 7R98, 7N0R, and 7CR5, which are conserved in the SARS-CoV-2 variants, SARS-CoV and MERS-CoV but lowly conserved in common cold coronaviruses. Therefore, we support the antigen tests as a scalable solution for the population-level diagnosis of SARS-CoV-2, but we highlight the need to verify the cross-reactivity of these tests against the common cold coronaviruses.


Subject(s)
COVID-19 , Common Cold , Middle East Respiratory Syndrome Coronavirus , Humans , SARS-CoV-2/genetics , Epitopes, B-Lymphocyte/genetics , COVID-19 Testing , COVID-19/diagnosis , Nucleocapsid , Spike Glycoprotein, Coronavirus/genetics
19.
J Hazard Mater ; 451: 131173, 2023 06 05.
Article in English | MEDLINE | ID: mdl-36924744

ABSTRACT

We aimed to evaluate the possible effects of the application of zinc oxide nanoparticles [ZnO NPs; 68.96 ± 33.71 nm; at 100 and 500 mg/kg in a soil mixture of the Typic Dystrophic Red Latosol type and sand (2:1 ratio)] in the cultivation of Panicum maximum (until 125 days), using different biomarkers in addition to evaluating the uptake of Zn by the plants. Furthermore, we assessed the possible transfer of ZnO NPs from P. maximum leaves to zebrafish and their potential. Plants cultivated in substrates with ZnO NPs at 500 mg/kg showed reduced germination rate and growth. However, at 100 mg/kg, plants showed higher biomass and productivity, associated with higher Zn uptake, without inducing oxidative and nitrosative stress. Zinc content in zebrafish was not associated with ingesting leaves of P. maximum cultivated in substrate containing ZnCl2 or ZnO NPs or with genotoxic, mutagenic, and biochemical effects. In conclusion, ZnO NPs (at 100 mg/kg) are promising in the cultivation of P. maximum, and their ingestion by zebrafish did not cause changes in the evaluated biomarkers. However, we recommend that studies with other animal models be conducted to comprehensively assess the ecotoxicological hazard associated with applying ZnO NPs in soil.


Subject(s)
Metal Nanoparticles , Panicum , Zinc Oxide , Animals , Zinc Oxide/toxicity , Zinc Oxide/chemistry , Guinea , Fresh Water , Soil/chemistry , Eating , Metal Nanoparticles/toxicity
20.
Membranes (Basel) ; 13(2)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36837642

ABSTRACT

Cationic antimicrobial peptides (CAMPs) offer a promising strategy to counteract bacterial resistance, mostly due to their membrane-targeting activity. W-BP100 is a potent broad-spectrum cecropin-melittin CAMP bearing a single N-terminal Trp, which was previously found to improve its antibacterial activity. W-BP100 has high affinity toward anionic membranes, inducing membrane saturation at low peptide-to-lipid (P/L) ratios and membrane permeabilization, with the unique property of promoting the aggregation of anionic vesicles only at specific P/L ratios. Herein, we aimed to investigate this unusual behavior of W-BP100 by studying its aggregation and fusion properties with negatively-charged large (LUVs) or giant (GUVs) unilamellar vesicles using biophysical tools. Circular dichroism (CD) showed that W-BP100 adopted an α-helical conformation in anionic LUVs, neutralizing its surface charge at the aggregation P/L ratio. Its fusion activity, assessed by Förster resonance energy transfer (FRET) using steady-state fluorescence spectroscopy, occurred mainly at the membrane saturation/aggregation P/L ratio. Confocal microscopy studies confirmed that W-BP100 displays aggregation and detergent-like effects at a critical P/L ratio, above which it induces the formation of new lipid aggregates. Our data suggest that W-BP100 promotes the aggregation and fusion of anionic vesicles at specific P/L ratios, being able to reshape the morphology of GUVs into new lipid structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...