Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Issues Mol Biol ; 44(5): 2089-2106, 2022 May 09.
Article in English | MEDLINE | ID: mdl-35678670

ABSTRACT

Subtilisin proteases, found in all organisms, are enzymes important in the post-translational steps of protein processing. In Leishmania major and L. donovani, this enzyme has been described as essential to their survival; however, few compounds that target subtilisin have been investigated for their potential as an antileishmanial drug. In this study, we first show, by electron microscopy and flow cytometry, that subtilisin has broad localization throughout the cytoplasm and membrane of the parasite in the promastigote form with foci in the flagellar pocket. Through in silico analysis, the similarity between subtilisin of different Leishmania species and that of humans were determined, and based on molecular docking, we evaluated the interaction capacity of a serine protease inhibitor against both life cycle forms of Leishmania. The selected inhibitor, known as PF-429242, has already been used against the dengue virus, arenaviruses, and the hepatitis C virus. Moreover, it proved to have antilipogenic activity in a mouse model and caused hypolipidemia in human cells in vitro. Here, PF-429242 significantly inhibited the growth of L. amazonensis promastigotes of four different strains (IC50 values = 3.07 ± 0.20; 0.83 ± 0.12; 2.02 ± 0.27 and 5.83 ± 1.2 µM against LTB0016, PH8, Josefa and LV78 strains) whilst having low toxicity in the host macrophages (CC50 = 170.30 µM). We detected by flow cytometry that there is a greater expression of subtilisin in the amastigote form; however, PF-429242 had a low effect against this intracellular form with an IC50 of >100 µM for intracellular amastigotes, as well as against axenic amastigotes (94.12 ± 2.8 µM for the LV78 strain). In conclusion, even though PF-429242 does not affect the intracellular forms, this drug will serve as a tool to explore pharmacological and potentially leishmanicidal targets.

2.
Microorganisms ; 10(2)2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35208853

ABSTRACT

The sterol biosynthesis pathway of Leishmania spp. is used as a pharmacological target; however, available information about the mechanisms of the regulation and remodeling of sterol-related genes is scarce. The present study investigated compensatory mechanisms of the sterol biosynthesis pathway using an inhibitor of HMG-CoA reductase (simvastatin) and by developing drug-resistant parasites to evaluate the impact on sterol remodeling, cross-resistance, and gene expression. Simvastatin-resistant L. amazonensis parasites (LaSimR) underwent reprogramming of sterol metabolism manifested as an increase in cholestane- and stigmastane-based sterols and a decrease in ergostane-based sterols. The levels of the transcripts of sterol 24-C-methyltransferase (SMT), sterol C14-α-demethylase (C14DM), and protease subtilisin (SUB) were increased in LaSimR. LaSimR was cross-resistance to ketoconazole (a C14DM inhibitor) and remained sensitive to terbinafine (an inhibitor of squalene monooxygenase). Sensitivity of the LaSimR mutant to other antileishmanial drugs unrelated to the sterol biosynthesis pathway, such as trivalent antimony and pentamidine, was similar to that of the wild-type strain; however, LaSimR was cross-resistant to miltefosine, general serine protease inhibitor N-p-tosyl-l-phenylalanine chloromethyl ketone (TPCK), subtilisin-specific inhibitor 4-[(diethylamino)methyl]-N-[2-(2-methoxyphenyl)ethyl]-N-(3R)-3-pyrrolidinyl-benzamide dihydrochloride (PF-429242), and tunicamycin. The findings on the regulation of the sterol pathway can support the development of drugs and protease inhibitors targeting this route in parasites.

3.
Front Microbiol ; 12: 583834, 2021.
Article in English | MEDLINE | ID: mdl-33584607

ABSTRACT

PF-429242 is an inhibitor of subtilisin, an important protease found in Leishmania. However, studies regarding the effect of PF-429242 on Leishmania are scarce. In this work we evaluated the antileishmanial effect of PF-429242 against Leishmania infantum and the mechanism involved in the death of the parasite. PF-429242 had low toxicity against mammalian cells (peritoneal macrophages) (CC50 = 189.07 µM) and presented activity against L. infantum promastigotes (IC50 = 2.78 µM) and intracellular amastigotes (IC50 = 14.07 µM), indicating selectivity toward the parasite. Transmission electron microscopy (TEM), as well as staining of L. infantum promastigotes with MitoTracker® Red, rhodamine 123 and MitoSOX, revealed that the mitochondria was a potential target of PF-429242. In addition, PF-429242 caused an accumulation of neutral lipids in promastigotes, which was demonstrated by Nile Red staining and TEM, and induced oxidative stress (H2DCFDA staining). Furthermore the formation of autophagic vacuoles in L. infantum promastigotes was observed by MDC staining and TEM. However, the killing induced by PF-429242 in L. infantum promastigotes appeared to be unrelated to apoptosis and/or necrosis as there was no phosphatidylserine externalization, DNA fragmentation or alterations in the permeability of the parasite plasma membrane, as assessed by annexin V-FITC, TUNEL and propidium iodide staining, respectively. The morphological and ultrastructural evaluation of the promastigotes by optical microscopy, scanning electron microscopy (SEM) and TEM, revealed the presence of parasites with flagellar defects. TEM analysis of the intracellular amastigotes indicated that mitochondrial damage and autophagy could also be involved in the death of these forms after treatment with PF-429242. In addition, PF-429242 treatment stimulated NO production from infected macrophage, but only at a high concentration (100 µM), as well as an increase of TNF levels after treatment with 10 µM of PF-429242. The compound did not stimulate ROS or IL-10 production. Together, these data highlight the antileishmanial potential of PF-429242, inducing several cellular alterations in the parasite, such as mitochondrial damage, neutral lipids accumulation, oxidative stress and autophagy which culminate in the death of L. infantum, as well as modulating host cellular responses that favor the development of an immune response against the parasite.

4.
Front Microbiol ; 10: 305, 2019.
Article in English | MEDLINE | ID: mdl-30873136

ABSTRACT

Cerebral malaria (CM) is a clinical syndrome involving irreversible and lethal signs of brain injury associated to infection by parasites of the genus Plasmodium. The pathogenesis of CM derives from infection-induced proinflammatory cytokines associated with cytoadherence of parasitized red blood cells to brain microvasculature. Glycoconjugates are very abundant in the surface of Plasmodium spp., and are critical mediators of parasite virulence in host-pathogen interactions. Herein, we show that 6-Diazo-5-oxo-L-norleucine (DON) therapeutically used for blocking hexosamine biosynthetic pathway leads to recovery in experimental murine cerebral malaria. DON-induced protection was associated with decreased parasitism, which severely reduced Plasmodium transmission to mosquitoes. These findings point to a potential use of DON in combination therapies against malaria.

5.
Expert Rev Anti Infect Ther ; 14(4): 435-42, 2016.
Article in English | MEDLINE | ID: mdl-26934623

ABSTRACT

Visceral leishmaniasis (VL) is a chronic parasitic disease caused by the vector-borne Leishmania donovani and Leishmania (L.) infantum chagasi parasites. The disease affects about 12 million humans in more than 90 countries worldwide. If not treated, the visceral form of Leishmania infection is potentially fatal, yielding about 50000 deaths per year. In the vertebrate host, the Leishmania species causing VL spread systematically to propagate in macrophage reservoirs distributed in the tissues of internal organs, primarily the liver, spleen, bone marrow and the lymph nodes. The infection is associated with evolved mechanisms from the parasite to subvert the host immune system in order to establish a persistent infection. Currently, efforts are being deployed to develop new anti-leishmanial therapies in VL combining immunomodulatory treatment regimens that burst the host immune responses together with leishmanicidal drugs that target the parasite growth. Discoveries in this field are discussed in this article.


Subject(s)
Antiparasitic Agents/therapeutic use , Host-Parasite Interactions/immunology , Immunologic Factors/therapeutic use , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/prevention & control , Disease Resistance/immunology , Humans , Leishmania donovani/physiology , Leishmania infantum/physiology , Leishmaniasis, Visceral/immunology , Macrophages/parasitology , Prevalence
6.
Oxid Med Cell Longev ; 2014: 479587, 2014.
Article in English | MEDLINE | ID: mdl-24803982

ABSTRACT

We examined nitric oxide (NO), IL-6, and TNF-α secretion from cultured palmitate-stimulated PBMNCs or in the plasma from type 2 diabetes mellitus (T2MD) patients or nondiabetic (ND) controls. Free fatty acids (FFA) have been suggested to induce chronic low-grade inflammation, activate the innate immune system, and cause deleterious effects on vascular cells and other tissues through inflammatory processes. The levels of NO, IL-6, TNF-α, and MDA were higher in supernatant of palmitate stimulated blood cells (PBMNC) or from plasma from patients. The results obtained in the present study demonstrated that hyperglycemia in diabetes exacerbates in vitro inflammatory responses in PBMNCs stimulated with high levels of SFA (palmitate). These results suggest that hyperglycemia primes PBMNCs for NO, IL-6, and TNF-alpha secretion under in vitro FFA stimulation are associated with the secretion of inflammatory biomarkers in diabetes. A combined therapy targeting signaling pathways activated by hyperglycemia in conjunction with simultaneous control of hyperglycemia and hypertriglyceridemia would be suggested for controlling the progress of diabetic complications.


Subject(s)
Diabetes Mellitus, Type 2/diagnosis , Hyperglycemia/metabolism , Interleukin-6/metabolism , Leukocytes, Mononuclear/drug effects , Nitric Oxide/metabolism , Tumor Necrosis Factor-alpha/metabolism , Aged , Blood Glucose/analysis , Cells, Cultured , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Female , Humans , Hyperglycemia/pathology , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Male , Malondialdehyde/blood , Middle Aged , Palmitates/pharmacology , Signal Transduction/drug effects , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...