Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38611558

ABSTRACT

In regions where water is a limited resource, lettuce production can be challenging. To address this, water management strategies like deficit irrigation are used to improve water-use efficiency in agriculture. Associating this strategy with silicon (Si) application could help maintain adequate levels of agricultural production even with limited water availability. Two lettuce crop cycles were conducted in a completely randomized design, with a factorial scheme (2 × 3), with three irrigation levels (60%, 80% and 100%) of crop evapotranspiration (ETc), and with and without Si application. To explore their combined effects, morphological, productive, physiological and nutritional parameters were evaluated in the crops. The results showed that deficit irrigation and Si application had a positive interaction: lettuce yield of the treatment with 80% ETc + Si was statistically similar to 100% ETc without Si in the first cycle, and the treatment with 60% ETc + Si was similar to 100% ETc without Si in the second cycle. Photosynthetic rate, stomatal conductance, intercellular CO2 concentration, transpiration rate and total chlorophyll content increased under water-stress conditions with Si application; in the first cycle, the treatment with 80% ETc + Si increased by 30.1%, 31.3%, 7.8%, 28.46% and 50.3% compared to the same treatment without Si, respectively. Si application in conditions of water deficit was also beneficial to obtain a cooler canopy temperature and leaves with higher relative water content. In conclusion, we found that Si applications attenuate water deficit effects and provide a strategy to ameliorate the yield and water productivity in lettuce crops, contributing to more sustainable practices in agriculture.

2.
Sci Total Environ ; 918: 170449, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38290672

ABSTRACT

This study investigated the quality of anaerobic (AnE) and oxic/anoxic (O/A) effluents from a continuous-feed structured-bed hybrid baffled reactor (SBHBR) treating dairy wastewater impacts on lettuce and cucumber germination. While sustainable technologies like SBHBR have successfully removed organic matter and total nitrogen from dairy wastewater, residual concentrations may still represent a risk to water resources. Therefore, phytotoxicity bioassays were conducted with lettuce and cucumber seeds in contact with effluent during early stages to evaluate the potential implications of dairy wastewater reuse in agriculture. The study also explored the potential of SBHBR technology in promoting water resource preservation and creating a sustainable energy and nutrient cycling system. The physicochemical parameters of both effluents were characterized, and the phytotoxicity was evaluated by measuring the germination index (GI), root length (RL), the number of germinated seeds (SG), and epicotyl elongation (EE) for both lettuce and cucumber. The study revealed that the O/A effluent demonstrated lower phytotoxicity than the AnE effluent. The mean results indicate that the O/A zone wastewater was more conducive to cucumber germination than the AnE zone. Moreover, a positive influence of organic matter in the effluent on root growth and epicotyl elongation in cucumber, as well as the presence of nitrogen on the germination index, in both plant species. These findings emphasize the importance of considering effluent characteristics for suitable irrigation, highlighting SBHBR's potential as an effective solution for treating and reusing dairy wastewater in agriculture. This approach helps conserve water resources and promote a sustainable energy and nutrient cycling system.


Subject(s)
Cucumis sativus , Wastewater , Germination , Plants , Agriculture , Nitrogen/pharmacology
3.
Waste Manag Res ; 37(1): 74-82, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30409077

ABSTRACT

Vegetable crop residues, such as sugarcane bagasse (SCB), despite their limited biodegradability, are potential materials for anaerobic processes because of their low cost, high availability, and sugar content. The difficulty of biodegrading this type of material is primarily related to its chemical composition and to the complex interactions between its compounds (cellulose, hemicelluloses, and lignin). Thus, the following supercritical and near critical carbon dioxide (CO2) pre-treatments were evaluated with and without the addition of sodium hydroxide (NaOH): (i) 40°C/70 kgf·cm-2; (ii) 60°C/200 kgf·cm-2; and (iii) 80°C/200 kgf·cm-2, aiming to enhance the anaerobic biodegradability of SCB. The methanogenic production of SCB increased in all cases in which the material was pre-treated, except the case in which NaOH was used together with a high temperature. The condition using CO2 at 60°C/200 kgf·cm-2 was highlighted with a lignin removal of 8.07% and an accumulated methane production of 0.6498 ± 0.014 LN (273.15K, 1.01325 × 105 Pa), 23.4% higher than the value obtained with the untreated material. This condition also showed the highest net energy at the energy balance that was calculated for comparison with the tested conditions. The results showed that pre-treatments with near critical and supercritical fluids have the potential to reduce structural obstacles of lignocellulosic materials and to enhance their anaerobic biodegradability.


Subject(s)
Lignin , Saccharum , Anaerobiosis , Biomass , Methane
SELECTION OF CITATIONS
SEARCH DETAIL
...