Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Foods ; 13(14)2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39063373

ABSTRACT

Neurodegenerative disorders (NDDs) such as Alzheimer's (AD) and Parkinson's (PD) are on the rise, robbing people of their memories and independence. While risk factors such as age and genetics play an important role, exciting studies suggest that a diet rich in foods from plant origin may offer a line of defense. These kinds of foods, namely fruits and vegetables, are packed with a plethora of powerful bioactive secondary metabolites (SBMs), including terpenoids, polyphenols, glucosinolates, phytosterols and capsaicinoids, which exhibit a wide range of biological activities including antioxidant, antidiabetic, antihypertensive, anti-Alzheimer's, antiproliferative, and antimicrobial properties, associated with preventive effects in the development of chronic diseases mediated by oxidative stress such as type 2 diabetes mellitus, respiratory diseases, cancer, cardiovascular diseases, and NDDs. This review explores the potential of SBMs as theravention agents (metabolites with therapeutic and preventive action) against NDDs. By understanding the science behind plant-based prevention, we may be able to develop new strategies to promote brain health and prevent the rise in NDDs. The proposed review stands out by emphasizing the integration of multiple SBMs in plant-based foods and their potential in preventing NDDs. Previous research has often focused on individual compounds or specific foods, but this review aims to present a comprehensive fingerprint of how a diet rich in various SBMs can synergistically contribute to brain health. The risk factors related to NDD development and the diagnostic process, in addition to some examples of food-related products and medicinal plants that significantly reduce the inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and ß-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1), are highlighted.

2.
Pharmacol Res ; 162: 105237, 2020 12.
Article in English | MEDLINE | ID: mdl-33053442

ABSTRACT

The endocannabinoid (eCB) system is a complex system comprising endogenous cannabinoids (eCBs), their synthesis and degradation enzymes, and cannabinoid receptors. These elements crucially regulate several biological processes during neurodevelopment, such as proliferation, differentiation, and migration. Recently, eCBs were also reported to have an epigenetic action on genes that play key functions in the neurotransmitter signaling, consequently regulating their expression. In turn, epigenetic modifications (e.g. DNA methylation, histone modifications) may also modulate the function of eCB system's elements. For example, the expression of the cnr gene in the central nervous system may be epigenetically regulated (e.g. DNA methylation, histone modifications), thus altering the function of the cannabinoid receptor type-1 (CB1R). Considering the importance of the eCB system during neurodevelopment, it is thus reasonable to expect that alterations in this interaction between the eCB system and epigenetic modifications may give rise to neurodevelopmental disorders. Here, we review key concepts related to the regulation of neuronal function by the eCB system and the different types of epigenetic modifications. In particular, we focus on the mechanisms involved in the intricate interplay between both signaling systems and how they control cell fate during neurodevelopment. Noteworthy, such mechanistic understanding assumes high relevance considering the implications of the dysregulation of key neurogenic processes towards the onset of neurodevelopment-related disorders. Moreover, considering the increasing popularity of cannabis and its synthetic derivatives among young adults, it becomes of utmost importance to understand how exogenous cannabinoids may epigenetically impact neurodevelopment.


Subject(s)
Endocannabinoids/metabolism , Epigenesis, Genetic , Neurogenesis/genetics , Animals , Cannabinoids/pharmacology , Humans , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism , Receptors, Cannabinoid/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL