Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 20(12)2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32545563

ABSTRACT

Conventional methods for detecting seed-borne fungi are laborious and time-consuming, requiring specialized analysts for characterization of pathogenic fungi on seed. Multispectral imaging (MSI) combined with machine vision was used as an alternative method to detect Drechslera avenae (Eidam) Sharif [Helminthosporium avenae (Eidam)] in black oat seeds (Avena strigosa Schreb). The seeds were inoculated with Drechslera avenae (D. avenae) and then incubated for 24, 72 and 120 h. Multispectral images of non-infested and infested seeds were acquired at 19 wavelengths within the spectral range of 365 to 970 nm. A classification model based on linear discriminant analysis (LDA) was created using reflectance, color, and texture features of the seed images. The model developed showed high performance of MSI in detecting D. avenae in black oat seeds, particularly using color and texture features from seeds incubated for 120 h, with an accuracy of 0.86 in independent validation. The high precision of the classifier showed that the method using images captured in the Ultraviolet A region (365 nm) could be easily used to classify black oat seeds according to their health status, and results can be achieved more rapidly and effectively compared to conventional methods.


Subject(s)
Avena/microbiology , Plant Diseases/microbiology , Seeds/microbiology , Ascomycota/isolation & purification , Ascomycota/pathogenicity
2.
Protoplasma ; 255(4): 989-999, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29354852

ABSTRACT

Although negative effects on the offspring fitness can be triggered by the mother-plant exposure to environmental stresses, some plants are able to "remember" past incidents and enhance the progeny tolerance. Here, the mineral profile, cytogenetic modifications, and physiological potential of seeds from two tomato cultivars, with contrasting tolerance degrees to cadmium (Cd) toxicity, were evaluated after plant exposure to this metal. Both cultivars exhibited high Cd translocation to the seeds; however, the tolerant tomato accumulated more Cd than did the sensitive one. As a consequence of the Cd accumulation, reductions in the Mn concentration in Cd-challenged plants were detected. Surprisingly, seed germination and vigor were increased in the tolerant tomato cultivar after Cd exposure, despite increases in the chromosomal abnormalities. By contrast, seeds from the sensitive cultivar exhibited no changes in their physiological potential after Cd exposure, despite Cd-induced reductions in the mitotic index. Moreover, bunch position exerted effects on the vigor and type of chromosomal abnormality. The results show that maternal plant exposure to Cd can affect tomato offspring by changing the seed physiological potential, and such effect can be partially explained by alterations in the seed-derived elements (essential and non-essential) and genotype-dependent tolerance mechanisms.


Subject(s)
Cadmium/toxicity , Germination/drug effects , Plant Roots/drug effects , Seeds/drug effects , Solanum lycopersicum/drug effects , Genotype
SELECTION OF CITATIONS
SEARCH DETAIL
...