Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 127(1): 276-285, 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36542816

ABSTRACT

We perform spatially resolved measurements of temperature, gaseous species up to three-ring Polycyclic Aromatic Hydrocarbons (PAHs), and soot in atmospheric pressure counterflow diffusion flames. First, we characterize fully a baseline ethylene flame and then a toluene-seeded flame in which an aliquot of ethylene in the feed stream is replaced with 3500 ppm of prevaporized toluene. The goal is twofold: to investigate the impact of a common reference fuel component of surrogates of transportation fuels and bypass the main bottleneck to soot formation from aliphatic fuels, that is, the formation of the first aromatic ring. The composition of the fuel and oxidizer streams are adjusted to maintain a constant stoichiometric mixture fraction and global strain rate, thereby ensuring invariance of the temperature-time history in the comparison between the two flames and decoupling the chemical effects of the fuel substitution from other factors. Major combustion products and critical radicals are fixed by the baseline flame, and profiles of critical C2-C5 species precursors to aromatic formation are invariant in both flames. On the other hand, doping with toluene boosts the aromatic content and soot volume fraction, increasing the mole fraction of benzenoid structures and soot volume fraction by a factor of 2 or 3, relative to the baseline ethylene flame. This finding is consistent with the expectation that the formation of the first aromatic ring is no longer a bottleneck to soot formation in the doped flame. In addition, toluene bypasses completely benzene formation, opening a radical recombination pathway to soot precursors through the production of C14H14 (via dimerization of benzyl radical) and pyrene (through dimerization of indenyl radical).

2.
J Pharm Sci ; 106(11): 3316-3327, 2017 11.
Article in English | MEDLINE | ID: mdl-28652156

ABSTRACT

Polymer nanoparticles (NP) are of escalating interest for their application as immune stimulatory pharmaceutics. The production of nanosized carrier systems is currently being widely investigated, but commonly used techniques, such as the double emulsion technique, are limited by shortcomings of low encapsulation efficiency and poor control over size distribution. In this study, the electrospray technique was successfully implemented and optimized to produce monodisperse 200-nm poly(lactide-co-glycolide) (PLGA) NP. For cytomegalovirus (CMV) pp65 and IE-1 peptides, a consistent encapsulation efficiency of approximately 85% was achieved. In vitro stimulation of peripheral blood mononuclear cells (PBMCs) from CMV+ donors using electrosprayed pp65489-503 peptide-loaded NP revealed a significantly increased proliferation rate and frequency of antigen-specific CD8+ T cells as compared to the soluble peptide. The results of this study demonstrate the suitability of the electrospray technique for production of monodisperse PLGA NP with high drug encapsulation efficiency as promising peptide-based vaccine carriers.


Subject(s)
CD8-Positive T-Lymphocytes/drug effects , Cell Proliferation/drug effects , Drug Carriers/chemistry , Leukocytes, Mononuclear/drug effects , Nanoparticles/chemistry , Peptides/administration & dosage , Polyglactin 910/chemistry , CD8-Positive T-Lymphocytes/cytology , Cells, Cultured , Cytomegalovirus/chemistry , Humans , Immediate-Early Proteins/administration & dosage , Immediate-Early Proteins/chemistry , Immediate-Early Proteins/pharmacology , Leukocytes, Mononuclear/cytology , Peptides/chemistry , Peptides/pharmacology , Phosphoproteins/administration & dosage , Phosphoproteins/chemistry , Phosphoproteins/pharmacology , Spectrometry, Mass, Electrospray Ionization , Trans-Activators/administration & dosage , Trans-Activators/chemistry , Trans-Activators/pharmacology , Vaccines/administration & dosage , Vaccines/chemistry , Vaccines/pharmacology , Viral Matrix Proteins/administration & dosage , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/pharmacology
3.
Adv Mater ; 28(46): 10298-10303, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27709691

ABSTRACT

An opposite-polarity electrospray technique is developed to synthesize Mn3 O4 -graphene hybrid nanomaterial that shows high specific capacity, fast charging/discharging capability, and long cycle life for lithium storage. The approach offers nanoparticle size control and tunability, morphology control, versatility for the synthesis of different materials and hybrid structures from different precursors, and continuous-flow nanomanufacturing with the potential for full automation.

4.
J Colloid Interface Sci ; 467: 220-229, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26803601

ABSTRACT

Microsphere-based controlled release technologies have been utilized for the long-term delivery of proteins, peptides and antibiotics, although their synthesis poses substantial challenges owing to formulation complexities, lack of scalability, and cost. To address these shortcomings, we used the electrospray process as a reproducible, synthesis technique to manufacture highly porous (>94%) microspheres while maintaining control over particle structure and size. Here we report a successful formulation recipe used to generate spherical poly(lactic-co-glycolic) acid (PLGA) microspheres using the electrospray (ES) coupled with a novel thermally induced phase separation (TIPS) process with a tailored Liquid Nitrogen (LN2) collection scheme. We show how size, shape and porosity of resulting microspheres can be controlled by judiciously varying electrospray processing parameters and we demonstrate examples in which the particle size (and porosity) affect release kinetics. The effect of electrospray treatment on the particles and their physicochemical properties are characterized by scanning electron microscopy, confocal Raman microscopy, thermogravimetric analysis and mercury intrusion porosimetry. The microspheres manufactured here have successfully demonstrated long-term delivery (i.e. 1week) of an active agent, enabling sustained release of a dye with minimal physical degradation and have verified the potential of scalable electrospray technologies for an innovative TIPS-based microsphere production protocol.


Subject(s)
Delayed-Action Preparations , Lactic Acid/chemistry , Microspheres , Polyglycolic Acid/chemistry , Rhodamines/analysis , Kinetics , Lactic Acid/chemical synthesis , Microscopy, Electron, Scanning , Particle Size , Polyglycolic Acid/chemical synthesis , Polylactic Acid-Polyglycolic Acid Copolymer , Porosity , Spectrum Analysis, Raman , Surface Properties , Thermogravimetry
5.
J Colloid Interface Sci ; 417: 121-30, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24407667

ABSTRACT

This study reports on a methodology to control the size of polymer particles generated by the electrospray (ES) drying route, with emphasis on the generation of biodegradable polymer nanoparticles that are well suited for biomedical applications. The ability to produce spherical poly(lactic-co-glycolic) acid (PLGA) particles with and without encapsulated active agent, with relative standard deviation not exceeding 15%, was demonstrated over a remarkably broad (60 nm-2 µm) diameter range. By judiciously choosing ES parameters and solution properties, we can control the monodispersity and the size of the obtained particles, tailoring it to a specific application. The main parameters affecting particle size include solution electrical conductivity, flow rate and initial polymer volume fraction. Quasi-monodispersity at both the micro- and the more challenging nano-scale was achieved by avoiding Coulomb fission in the spray droplets, via entanglement of the polymer chains within the droplets rather than by charge neutralization. Guiding principles in the formulation of the solutions to satisfy a multiplicity of constraints are provided along with an extensive database of "recipes".


Subject(s)
Drug Carriers/chemistry , Lactic Acid/chemistry , Nanoparticles/chemistry , Polyglycolic Acid/chemistry , Antibiotics, Antineoplastic/chemistry , Doxorubicin/chemistry , Drug Compounding , Electric Conductivity , Kinetics , Microscopy, Electron, Scanning , Nanoparticles/ultrastructure , Particle Size , Polylactic Acid-Polyglycolic Acid Copolymer , Rhodamines/chemistry , Static Electricity
6.
J Control Release ; 154(2): 203-10, 2011 Sep 05.
Article in English | MEDLINE | ID: mdl-21640147

ABSTRACT

While conventional methods for biodegradable particle production rely predominately on batch, emulsion preparation methods, an alternative process based on multiplexed electrospray (ES) can offer distinct advantages. These include enhanced encapsulation efficiency of hydrophilic and hydrophobic agents, scale-up potential, tight control over particle size and excellent particulate reproducibility. Here we developed a well-controlled ES process to synthesize coated biodegradable polymer particles. We demonstrate this process with the Poly(DL-lactic-co-glycolic acid) system encapsulating amphiphilic agents such as doxorubicin (DOX), Rhodamine B (RHO(B)) and Rhodamine B octadecyl ester perchlorate (RHO(BOEP)). We show that in a single-step flow process particles can be made encapsulating the agent with high efficiency and coated either with emulsifiers that stabilize them in solution or that may facilitate further functionalization for targeted drug delivery. The coating process allows for the surface modification of the particles without further changes in particle size or morphology, and with minimal loss of drug (>94% encapsulation efficiency). This synthesis technique is well suited for massive scale-up using microfabricated, multiplexed arrays consisting of multiple electrospray nozzles operating in parallel. A simple analytical model of the diffusion of the encapsulated agent within the polymer reveals two distinct phases in the cumulative release profile: a first phase in which the release is dominated by diffusion and a second phase with a slower release related to the erosion of the polymer matrix. The first, diffusion-driven stage is highly affected by particle agglomeration properties, whereas the second one shows a much less pronounced dependence on particle size. Modeling suggests that the size of the particles will substantially influence the initial burst in both the percentage of drug released and the rate at which it is released. It will also affect to a smaller extent the secondary slow and sustained release. Our study highlights the importance of tight control over particle size and morphology and the avoidance of particle aggregation for control over the release kinetics and formulation repeatability.


Subject(s)
Chemistry, Pharmaceutical/methods , Drug Delivery Systems/methods , Biocompatible Materials/administration & dosage , Drug Stability , Hydrophobic and Hydrophilic Interactions , Lactic Acid/administration & dosage , Particle Size , Polyglycolic Acid/administration & dosage , Polylactic Acid-Polyglycolic Acid Copolymer , Reproducibility of Results , Rhodamines/administration & dosage
7.
Rev Sci Instrum ; 81(3): 035114, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20370220

ABSTRACT

Many novel functional structures are now fabricated by controlled deposition as a maskless, bottom-up fabrication technique. These applications require rapid and precise deposition of minute amounts of solutions/suspensions or their ultimate particle products in predefined patterns. The electrospray is a promising alternative to the commonly used inkjet printing because it can easily handle highly viscous liquid, avoid high shear rates, and has low risk of clogging. We demonstrate a proof-of-concept digital electrospray. This system consists of a 61-nozzle array microfabricated in silicon and a 61-element digital extractor fabricated using flexible polyimide substrates. "Digital" refers to the state of each electrospray source that can be tuned either on or off independently and responsively. We showed a resolution of 675 mum and a response frequency up to 100 Hz. With similar design and industry standard fabrication procedures, it is feasible to scale up the system to O(1000) sources with spatial resolution better than 250 mum and a O(kHz) response frequency. The latter is controlled by the viscous damping time.


Subject(s)
Electronics/instrumentation , Elasticity , Electrodes , Electromagnetic Fields , Electronics/methods , Equipment Design , Microtechnology , Photography , Silicon , Solutions , Suspensions , Time Factors , Viscosity
8.
J Colloid Interface Sci ; 343(1): 125-33, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20022337

ABSTRACT

We developed a well-controlled method to generate PLGA microparticles of different morphologies using the electrospray drying route. By judiciously selecting polymer molecular weight, concentration, and solution flow rate, we can control the order in which polymer entanglements and Coulomb fission occur in the droplets and their relative importance, and subsequently govern the morphology of the resulting polymer particles. We show that spherical, monodisperse particles are generated when sufficiently strong polymer entanglements set in the evaporating droplets before they undergo any Coulomb fission. On the other hand, tailed and elongated particles are obtained if the Coulomb fission occurs first and if the droplets/particles are sufficiently evaporated to freeze in their irregular shape. Strictly spherical particles are unachievable for polymer solutions below a critical concentration, because the onset of Coulomb fission always sets in prior to the development of a sufficiently entangled polymer network. An extension of a simple model, originally used to determine the onset of electrospinning of polymer solutions, adequately predicts when non-spherical particles are produced. We conclude by demonstrating the scale-up of this approach to the synthesis of polymer particles using a compact, microfabricated, multiplexed electrospray system, which would make it suitable for practical applications.


Subject(s)
Delayed-Action Preparations/chemistry , Electrochemistry/methods , Lactic Acid/chemistry , Polyglycolic Acid/chemistry , Electrochemistry/instrumentation , Equipment Design , Particle Size , Polylactic Acid-Polyglycolic Acid Copolymer
9.
Respir Care ; 47(12): 1419-31; discussion 1431-3, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12467500

ABSTRACT

This review explains the fundamentals of electrostatic spray (electrospray) atomization, with emphasis on operation in the so called cone-jet mode, which produces droplets with a very narrow size distribution. Since the control of droplet size is key to maximizing distal lung deposition, the electrospray should be well-suited to targeted drug inhalation. Electrospray droplets are a few micrometers in diameter, but they originate from a much larger nozzle, which allows nebulization of suspensions without clogging. Also discussed are: the physical principles of the break-up of the liquid ligament; droplet dispersion by Coulombic forces; and the most important scaling law linking the droplet size to liquid flow rate and liquid physical properties. The effects of the most critical of those properties may result in some restrictions on drug formulation. Droplets produced by electrospray are electrically charged, so to prevent electrostatic image forces from causing upper respiratory tract deposition. The charge is neutralized by generating a corona discharge of opposite polarity. Briefly discussed are the main differences between the laboratory systems (with which the electrospray has been quantitatively characterized during research in the past 10 years) and commercial electrospray inhalers under development at BattellePharma. Some remarkable miniaturization has incorporated liquid pump, power supply, breath activation, and dose counter into a palm-size portable device. The maximum flow rates dispersed from these devices are in the range of 8-16 microL/s, which makes them suitable for practical drug inhalation therapy. Fabrication is economically competitive with inexpensive nebulizers. Dramatic improvements in respirable dose efficiency (up to 78% by comparison with commercial metered-dose inhalers and dry powder inhalers) should ensure the commercialization of this promising technology for targeted drug inhalation.


Subject(s)
Aerosols/administration & dosage , Electricity , Nebulizers and Vaporizers , Administration, Inhalation , Equipment Design , Humans , Miniaturization , Particle Size , Physical Phenomena , Physics
SELECTION OF CITATIONS
SEARCH DETAIL
...