Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(6)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35131850

ABSTRACT

We present a magnetic sensor with energy resolution per bandwidth [Formula: see text] We show how a 87Rb single-domain spinor Bose-Einstein condensate, detected by nondestructive Faraday rotation probing, achieves single-shot low-frequency magnetic sensitivity of 72(8) fT measuring a volume [Formula: see text] for 3.5 s, and thus, [Formula: see text] We measure experimentally the condensate volume, spin coherence time, and readout noise and use phase space methods, backed by three-dimensional mean-field simulations, to compute the spin noise. Contributions to the spin noise include one-body and three-body losses and shearing of the projection noise distribution, due to competition of ferromagnetic contact interactions and quadratic Zeeman shifts. Nonetheless, the fully coherent nature of the single-domain, ultracold two-body interactions allows the system to escape the coherence vs. density trade-off that imposes an energy resolution limit on traditional spin precession sensors. We predict that other Bose-condensed alkalis, especially the antiferromagnetic 23Na, can further improve the energy resolution of this method.

2.
Sensors (Basel) ; 21(11)2021 May 27.
Article in English | MEDLINE | ID: mdl-34072163

ABSTRACT

Connections are critical elements in power systems, exhibiting higher failure probability. Power connectors are considered secondary simple devices in power systems despite their key role, since a failure in one such element can lead to major issues. Thus, it is of vital interest to develop predictive maintenance approaches to minimize these issues. This paper proposes an on-line method to determine the remaining useful life (RUL) of power connectors. It is based on a simple and accurate model of the degradation with time of the electrical resistance of the connector, which only has two parameters, whose values are identified from on-line acquired data (voltage drop across the connector, electric current and temperature). The accuracy of the model presented in this paper is compared with the widely applied autoregressive integrated moving average model (ARIMA), showing enhanced performance. Next, a criterion to determine the RUL is proposed, which is based on the inflection point of the expression describing the electrical resistance degradation. This strategy allows determination of when the connector must be replaced, thus easing predictive maintenance tasks. Experimental results from seven connectors show the potential and viability of the suggested method, which can be applied to many other devices.

3.
Sensors (Basel) ; 20(24)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339377

ABSTRACT

Insulation faults in high-voltage applications often generate partial discharges (PDs) accompanied by corona activity, optical radiation mainly in the ultraviolet (UV) and visible bands. Recent developments in low-cost, small-size, and high-resolution visible imaging sensors, which are also partially sensitive to the UV spectral region, are gaining attention due to their many industrial applications. This paper proposes a method for early PD detection by using digital imaging sensors, which allows the severity of insulation faults to be assessed. The electrical power dissipated by the PDs is correlated to the energy of the acquired visible images, and thus, the severity of insulation faults is determined from the energy of the corona effect. A criterion to quantify the severity of insulation faults based on the energy of the corona images is proposed. To this end, the point-to-plane gap configuration is analyzed in a low-pressure chamber, where digital image photographs of the PDs are taken and evaluated under different pressure conditions ranging from 10 to 100 kPa, which cover the typical pressure range of aeronautic applications. The use of digital imaging sensors also allows an early detection, location and quantification of the PD activity, and thus assessing the severity of insulation faults to perform predictive maintenance tasks, while enabling the cost and complexity of the instrumentation to be reduced. Although the approach proposed in this paper has been applied to detect PDs in aeronautic applications, it can be applied to many other high-voltage applications susceptible of PD occurrence.

4.
Phys Rev Lett ; 124(17): 170401, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32412288

ABSTRACT

We describe a comagnetometer employing the f=1 and f=2 ground state hyperfine manifolds of a ^{87}Rb spinor Bose-Einstein condensate as colocated magnetometers. The hyperfine manifolds feature nearly opposite gyromagnetic ratios and thus the sum of their precession angles is only weakly coupled to external magnetic fields, while being highly sensitive to any effect that rotates both manifolds in the same way. The f=1 and f=2 transverse magnetizations and azimuth angles are independently measured by nondestructive Faraday rotation probing, and we demonstrate a 44.0(8) dB common-mode rejection in good agreement with theory. We show how the magnetometer coherence time can be extended to ∼1 s, by using spin-dependent interactions to inhibit hyperfine relaxing collisions between f=2 atoms. The technique could be used in high sensitivity searches for new physics on submillimeter length scales, precision studies of ultracold collision physics, and angle-resolved studies of quantum spin dynamics.

5.
Sensors (Basel) ; 20(6)2020 Mar 16.
Article in English | MEDLINE | ID: mdl-32188101

ABSTRACT

Next generation aircrafts will use more electrical power to reduce weight, fuel consumption, system complexity and greenhouse gas emissions. However, new failure modes and challenges arise related to the required voltage increase and consequent rise of electrical stress on wiring insulation materials, thus increasing the risk of electrical arc appearance. This work performs a critical and comprehensive review concerning arc tracking effects in wiring insulation systems, underlying mechanisms, role of materials and possible mitigation strategies, with a special focus on aircraft applications. To this end an evaluation of the scientific and technological state of the art is carried out from the analysis of theses, research articles, technical reports, international standards and white papers. This review paper also reports the limitations of existing insulation materials, standard test methods and mitigation approaches, while identifying the research needs to comply with the future demands of the aircraft industry.

6.
Sensors (Basel) ; 20(2)2020 Jan 11.
Article in English | MEDLINE | ID: mdl-31940780

ABSTRACT

Visual corona tests have been broadly applied for identifying the critical corona points of diverse high-voltage devices, although other approaches based on partial discharge or radio interference voltage measurements are also widely applied to detect corona activity. Nevertheless, these two techniques must be applied in screened laboratories, which are scarce and expensive, require sophisticated instrumentation, and typically do not allow location of the discharge points. This paper describes the detection of the visual corona and location of the critical corona points of a sphere-plane gap configurations under different pressure conditions ranging from 100 to 20 kPa, covering the pressures typically found in aeronautic environments. The corona detection is made with a low-cost CMOS imaging sensor from both the visible and ultraviolet (UV) spectrum, which allows detection of the discharge points and their locations, thus significantly reducing the complexity and costs of the instrumentation required while preserving the sensitivity and accuracy of the measurements. The approach proposed in this paper can be applied in aerospace applications to prevent the arc tracking phenomenon, which can lead to catastrophic consequences since there is not a clear protection solution, due to the low levels of leakage current involved in the pre-arc phenomenon.

7.
Opt Express ; 27(26): 38463-38478, 2019 Dec 23.
Article in English | MEDLINE | ID: mdl-31878613

ABSTRACT

We describe a cavity-enhanced spontaneous parametric down-conversion (CE-SPDC) source for narrowband photon pairs with filters designed such that 97.7% of the correlated photons are in a single mode of 4.3(4) MHz bandwidth. Type-II phase matching, a tuneable-birefringence resonator, MHz-resolution pump tuning, and tuneable Fabry-Perot filters are used to achieve independent signal and idler tuning. We map the CE-SPDC spectrum using difference frequency generation to precisely locate the emission clusters, demonstrate CE-SPDC driven atomic spectroscopy, and measure a contribution from unwanted modes of 7.7%. The generated photon pairs efficiently interact with neutral rubidium, a well-developed system for quantum networking and quantum simulation. The techniques are readily extensible to other material systems.

8.
J Immunol ; 194(9): 4199-206, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25801430

ABSTRACT

Graves' disease (GD) is an autoimmune thyroid disease defined by the production of stimulating autoantibodies to the thyroid-stimulating hormone receptor (TSHR) (TSAbs) that induce a sustained state of hyperthyroidism in patients. We previously demonstrated that TSHR, the target of this autoimmune response, is also a key susceptibility gene for GD, probably acting through thymic-dependent central tolerance. We also showed that TSHR is, unexpectedly, expressed in thymocytes. In this report, we confirm the expression of TSHR in thymocytes by protein immunoblotting and quantitative PCR, and show that expression is confined to maturing thymocytes. Using functional assays, we show that thymic TSHR is functional and that TSAbs can stimulate thymocytes through this receptor. This new activity of TSAbs on thymocytes may: 1) explain GD-associated thymic enlargement (hyperplasia), and 2) suggest the provocative hypothesis that the continuous stimulation of thymocytes by TSAbs could lead to a vicious cycle of iterative improvement of the affinity and stimulating capability of initially low-affinity antibacterial (e.g., Yersinia) Abs cross-reactive with TSHR, eventually leading to TSAbs. This may help to fill one of the gaps in our present understanding of unusual characteristics of TSAbs.


Subject(s)
Autoantibodies/immunology , Graves Disease/immunology , Lymphocyte Activation/immunology , Receptors, Thyrotropin/immunology , Thymocytes/immunology , Adolescent , Child , Child, Preschool , Humans , Infant , Receptors, Thyrotropin/genetics , Thymocytes/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...