Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Gene ; 496(2): 118-27, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22285974

ABSTRACT

Pichia pastoris is a methylotrophic yeast that has been genetically engineered to express over one thousand heterologous proteins valued for industrial, pharmaceutical and basic research purposes. In most cases, the 5' untranslated region (UTR) of the alcohol oxidase 1 (AOX1) gene is fused to the coding sequence of the recombinant gene for protein expression in this yeast. Because the effect of the AOX1 5'UTR on protein expression is not known, site-directed mutagenesis was performed in order to decrease or increase the length of this region. Both of these types of changes were shown to affect translational efficiency, not transcript stability. While increasing the length of the 5'UTR clearly decreased expression of a ß-galactosidase reporter in a proportional manner, a deletion analysis demonstrated that the AOX1 5'UTR contains a complex mixture of both positive and negative cis-acting elements, suggesting that the construction of a synthetic 5'UTR optimized for a higher level of expression may be challenging.


Subject(s)
5' Untranslated Regions , Alcohol Oxidoreductases/genetics , Gene Expression Regulation, Fungal , Pichia/metabolism , Base Sequence , Cell-Free System , Gene Deletion , Gene Expression Profiling/methods , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Nucleic Acid Conformation , Protein Biosynthesis , Real-Time Polymerase Chain Reaction/methods , Recombinant Proteins/metabolism , beta-Galactosidase/metabolism
2.
Biochem Biophys Res Commun ; 402(3): 519-24, 2010 Nov 19.
Article in English | MEDLINE | ID: mdl-20971072

ABSTRACT

The human secretory leukocyte protease inhibitor (SLPI) is an 11.7 kD cysteine-rich protein that has been shown to possess anti-protease, anti-inflammatory, and antimicrobial properties. By using a Pichia pastoris strain that overproduces protein disulfide isomerase (PDI), we obtained greater than fivefold higher levels of SLPI than in strains expressing normal levels of PDI and containing multiple copies of the SLPI gene. Elevated levels of PDI also enhanced the specific activity of the secreted SLPI by helping it achieve a proper tertiary structure. Mass spectrometry analysis indicated a greater number of disulfide bonds in the SLPI produced by the PDI overexpression strain compared to the SLPI produced in strains with normal PDI levels. Although others have utilized a similar strategy to increase yield, we believe that this is the first example of PDI overexpression being demonstrated to enhance the folding and thus increase the biological activity of a protein produced in the yeast P. pastoris.


Subject(s)
Pichia/metabolism , Recombinant Proteins/biosynthesis , Secretory Leukocyte Peptidase Inhibitor/biosynthesis , Fermentation , Glycosylation , Humans , Pichia/genetics , Pichia/growth & development , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Secretory Leukocyte Peptidase Inhibitor/chemistry , Secretory Leukocyte Peptidase Inhibitor/genetics
3.
Protein Expr Purif ; 72(1): 113-24, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20230898

ABSTRACT

The Escherichia coli maltose binding protein (MBP) has been utilized as a translational fusion partner to improve the expression of foreign proteins made in E. coli. When located N-terminal to its cargo protein, MBP increases the solubility of intracellular proteins and improves the export of secreted proteins in bacterial systems. We initially explored whether MBP would have the same effect in the methylotrophic yeast Pichia pastoris, a popular eukaryotic host for heterologous protein expression. When MBP was fused as an N-terminal partner to several C-terminal cargo proteins expressed in this yeast, proteolysis occurred between the two peptides, and MBP reached the extracellular region unattached to its cargo. However, in two of three instances, the cargo protein reached the extracellular region as well, and its initial attachment to MBP enhanced its secretion from the cell. Extensive mutagenesis of the spacer region between MBP and its C-terminal cargo protein could not inhibit the cleavage although it did cause changes in the protease target sites in the fusion proteins, as determined by mass spectrometry. Taken together, these results suggested that an uncharacterized P. pastoris protease attacked at different locations in the region C-terminal of the MBP domain, including the spacer and cargo regions, but the MBP domain could still act to enhance the secretion of certain cargo proteins.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli/genetics , Periplasmic Binding Proteins/genetics , Pichia/genetics , Recombinant Fusion Proteins/genetics , Amino Acid Sequence , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/isolation & purification , Escherichia coli Proteins/metabolism , Gene Expression , Maltose-Binding Proteins , Molecular Sequence Data , Mutagenesis , Mutagenesis, Site-Directed , Periplasmic Binding Proteins/chemistry , Periplasmic Binding Proteins/isolation & purification , Periplasmic Binding Proteins/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...